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1 Introduction

Physical systems that involve an infinite number of degrees of freedom can conveniently be

described by some sort of field theory. Almost all systems in nature involve an extremely large

number of degrees of freedom. For instance, a droplet of water contains of the order of 1026

molecules and while each water molecule can in many applications be described as a point

particle, each molecule has itself a complicated structure which reveals itself at molecular

length scales. To deal with this large number of degrees of freedom, which for all practical

purposes is infinite, one often regards a system as continuous, in spite of the fact that, at

small enough distance scales, it is discrete. Another example is a violin string, which can be

understood as a continuous system and whose vibrations are described by a function (called

the ‘displacement field’) defined along the string that specifies its (transverse) displacement

from equilibrium. This mechanical system is not described by specifying the equations of

motion for each atom separately, but instead the displacement field is used as the dynamical

variable, which, being continuous, comprises an infinite number of degrees of freedom. In

classical mechanics field theory is thus obviously important for continuous systems. But also

electromagnetic phenomena are described on the basis of a field theory. In Maxwell’s theory

of electromagnetism the basic dynamical variables are the electric and magnetic fields. In

terms of these fields one can both understand the electromagnetic forces between charges

and the phenomenon of electromagnetic radiation.

The methods of classical mechanics can be suitably formulated so that they can be used

for continuous systems. However, to give a quantum-mechanical treatment of field theory is

much more difficult and requires new concepts. Some of these concepts are straightforward

generalizations of the quantum-mechanical treatment of systems based on a finite number

of degrees of freedom, but others are much less obvious. At the quantum mechanical level,

the infinite number of degrees of freedom may give rise to divergences which appear when

quantum operators are defined at the same point in space. These short-distance singularities

require special care. A possible consequence of these singularities is that the physical rele-

vance of a calculated result can not always be taken for granted. Likewise, also the physical

meaning of the dynamical variables is not always obvious.

In these lectures we introduce concepts and methods used in quantum field theory. The

lectures are not directly aimed at a particular application in physics, as quantum field theory

plays a role in many of them, such as in condensed matter physics, nuclear physics, particle

physics and string theory. But there is a certain unity in the methods that we use in all of

these applications, which may carry different names or they may be used in different ways

depending on the context. In these notes we are still somewhat biased in that we will usually
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deal with relativistic field theories.

A central role in these lectures is played by the path integral representation of quantum

field theory, which we will derive and use for both bosonic and for fermionic fields. Another

topic is the use of diagrammatic representations of the path integral. We try to keep the

context as simple as possible and this is the reason why we will often return to systems of

a finite number of degrees of freedom, to bring out the underlying principles as clearly as

possible. For instance, we discuss quantum tunneling by means of instantons, but we will

do this for a single particle, thus making contact with ‘standard’ quantum mechanics.

At the end of each chapter we present a number of exercises, where the student can verify

whether he/she has understood the material presented in that chapter and is able to apply

it in more practical situations.

Obviously, these lectures are but an introduction to the subject and the material that is

covered is very incomplete. Therefore we have added a list of useful textbooks for further

reading at the end.

2 Path integrals and quantum mechanics

In quantum mechanics the time evolution of states is governed by the Schrödinger equation

i~
∂

∂t
|ψ, t〉 = H(P,Q)|ψ, t〉 , (2.1)

where H(P,Q) is the Hamiltonian, and P and Q are the coordinate and the momentum

operator (in this chapter we restrict ourselves to a single one-dimensional particle, so that

we have only one coordinate and one momentum operator). The Schrödinger equation shows

that there exists an evolution operator that relates states at time t to states at an earlier

time t′, equal to

U(t, t′) = exp

[
− i

~
H(t− t′)

]
. (2.2)

The operators P and Q satisfy the well-known Heisenberg commutation relations

[Q,P ] = i~. (2.3)

Consider now a basis for the quantum mechanical Hilbert space consisting of states |q〉 which

are the eigenstates of the position operator Q with eigenvalue q taken at some given time.

These states are time-independent and will in general not coincide with eigenstates of the

Hamiltonian. The states |q〉 form a complete and orthonormal set, so that

〈q1|q2〉 = δ(q1 − q2) ,

∫
dq |q〉〈q| = 1 . (2.4)
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Similar equations hold for the states |p〉, which are the eigenstates of the momentum operator

P .

From these results it follows that the wave function of a particle with momentum p is

equal to

〈q|p〉 =
1√
2π~

e
i
~pq, (2.5)

and the momentum operator reads P = −i~ ∂/∂q. Using the ordering convention where

momentum operators P are written to the left of position operators Q in the Hamilton

H(P,Q), we have

〈p|H(P,Q)|q〉 =
1√
2π~

e−
i
~pqH(p, q) , (2.6)

where H(p, q) is the function of p and q corresponding to H(P,Q) with the operators ordered

according to the prescription given above.

The above equations were defined in the so-called Schrödinger picture, where states are

time-dependent while operators are in general time-independent. Alternatively, one can

make use of the Heisenberg picture. Here states are time-independent and can be defined by

|ψ〉H ≡ |ψ, t = 0〉S = e
i
~Ht |ψ, t〉S , (2.7)

(instead of t = 0 one may also choose some other reference time) whereas operators bare

generally time-dependent and they are given by

AH(t) = e
i
~HtAS e

− i
~Ht. (2.8)

Of course, these Heisenberg states are determined up to phase factors, but their precise

definition is of no concern. Subsequently we consider a state |q〉t1 which at t = t1 is an

eigenstate of the Schrödinger position operator Q with eigenvalue q. In the Schrödinger

picture, this state can be written as

(|q, t〉t1)S = e−
i
~H(t−t1)|q〉, (2.9)

while in the Heisenberg picture we have

(|q〉t1)H = e
i
~Ht1|q〉. (2.10)

Observe that (2.10) is an eigenstate of QH(t1) with eigenvalue q. In field theory it is standard

to use the Heisenberg picture, as we shall see later.

Define now the transition function between two such states,

W (q2, t2; q1, t1) ≡ t2〈q2|q1〉t1 , (2.11)
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which can be written as

W (q2, t2; q1, t1〉 = 〈q2|e−
i
~H(t2−t1)|q1〉, (2.12)

and thus corresponds to matrix elements of the evolution operator. We now observe that W

satisfies the following two properties. The first one is the product rule,∫
dq2 W (q3, t3; q2, t2) W (q2, t2; q1, t1) = W (q3, t3; q1, t1). (2.13)

The second one is an initial condition,

W (q2, t; q1, t) = δ(q2 − q1). (2.14)

The product rule (2.13) follows directly from the completeness of the states |q2〉, while the

initial condition (2.14) follows from (2.12) and (2.4).

We will now discuss an alternative representation for W in the form of a so-called path

integral. For that purpose we evaluate W by means of a limiting procedure. We first divide

a time interval (t0, tN) into N intervals (ti, ti+1) with ti+1 − ti = ∆, so that tN − t0 = N∆,

and furthermore we write qi = q(ti). Then W (qN , tN ; q0, t0) can be written as

W (qN , tN ; q0, t0) =

∫
dqN−1 · · ·

∫
dq1 W (qN , tN ; qN−1, tN−1) · · ·W (q1, t1; q0, t0). (2.15)

For small values of ∆ we may write

W (qi+1, ti + ∆; qi, ti) = 〈qi+1|e−
i
~H(P,Q)∆|qi〉

=

∫
dpi 〈qi+1|pi〉〈pi|e−

i
~H(P,Q)∆|qi〉

≈ 1

2π~

∫
dpi exp

(
i

~

[
pi(qi+1 − qi)−H(pi, qi)∆

])
, (2.16)

where we made use of (2.6). Note that (2.6) is not applicable to matrix elements of pow-

ers of the Hamiltonian. Hence we first expanded the exponential to first order in ∆ and

subsequently we re-exponentiated the result. Therefore (2.16) is only valid in the limit of

vanishing ∆. Substituting (2.16) into (2.15) now yields

W (qN , tN ; q0, t0) =

∫
dqN−1 · · ·

∫
dq1

∫
dp0

2π~
· · ·
∫
dpN−1

2π~

exp

(
i

~
∆

N−1∑
i=0

[
pi(qi+1 − qi)

∆
−H(pi, qi)

])
. (2.17)

Observe that we have N − 1 qi integrals and N pi integrals.

7



We now make the assumption that

H =
P 2

2m
+ V (Q) , (2.18)

and therefore H(pi, qi) =
p2i
2m

+ V (qi). The exponent in (2.17) can then be written as

pi(qi+1 − qi)

∆
− p2

i

2m
− V (qi) =

− 1

2m

(
pi −m

qi+1 − qi
∆

)2

+
m

2

(
qi+1 − qi

∆

)2

− V (qi). (2.19)

With this result the integrals over pi in (2.17) are just Gaussian integrals,∫ ∞
−∞

e−ax
2

dx =

√
π

a
, (2.20)

apart from the fact that a is imaginary in this case a = i∆/(2m~). Ignoring this subtlety 1

for the moment let us perform the pi integrals by means of (2.20), so that W becomes

W (qN , tN ; q0, t0) =

∫
dqN−1 · · ·

∫
dq1

( m

2πi~∆

)N/2
× exp

(
i

~
∆

N−1∑
i=0

[
m

2

(
qi+1 − qi

∆

)2

− V (qi)

])
. (2.21)

Taking the limit N → ∞, ∆ → 0, while keeping N∆ = tN − t0 fixed, the exponent in

(1.20) tends to

exp

{
i

~

∫ tN

t0

dt′
(m

2
(q̇(t′))2 − V (q(t′))

)}
. (2.22)

This can be written as exp
{
i
~S[q(t)]

}
, where S is the (classical) action defined as the time

integral of the Lagrangian L = T − V . Observe that the action is not a function, but a so-

called functional, which assigns a number to each trajectory q(t). Of course, by discretizing

the time, as we did previously, the action can be regarded as a function of the N+1 variables

qi = q(ti). Furthermore, the integration over dqi approaches an integration over all possible

functions q(t) with boundary values q(t1,2) = q1,2. Such an integral is called a path integral

and we may write

W (q2, t2; q1, t1) =

∫
q(t1)=q1
q(t2)=q2

Dq(t) e
i
~S[q(t)] . (2.23)

This is the path integral representation of W. Observe that this representation obviously

satisfies the product rule (2.13).

1Observe that (2.20) still holds provided Re a > 0.
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In the path integral (2.23) the factor exp
(
i
~S[q(t)]

)
thus assigns a weight to every ”path”

or trajectory described by the function q(t). In contrast with the usual integration of func-

tions, the path integral is an integration of functionals. It is not easy to give a general

and more rigorous definition of a path integral. Such a definition depends on the class of

functionals that appear in the integrand. The expression that results from the limiting pro-

cedure (cf. (2.21)) is one particular way to define a path integral. It is known as the Wiener

measure, and is usually defined by the requirement that
∫
dq2W (q1, t1; q2, t2) = 1 when the

action is that of a free particle. Indeed, it is easy to verify that the N integrals in (2.21) over

q0, . . . , qN−1 yield 1 in the case that V (qi) = 0. It turns out, that this definition applies also

to more general functionals S that consist of a standard kinetic term and a large class of po-

tentials V (at least, in the Euclidean theory, where one does not have the troublesome factor

of i in the exponential; see chapter 7). For this class, trajectories that are not sufficiently

smooth will be suppressed in the integral.

An important advantage of the path-integral formalism as compared to the canonical

operator approach, is that it is manifestly Lorentz invariant (see chapter 5). The reason is

that the action is a Lorentz scalar, at least for relativistically invariant theories. Another

advantage is that the path integral can also be used in those cases where the time variable can

not be globally defined. This may happen when the (field) theory is defined in a space-time

of nontrivial topology.

We will now demonstrate some properties of W . First let {|n〉} be a complete set of

eigenstates of H: H|n〉 = En|n〉. In the q representation, where 〈q|n〉 = ϕn(q), we then find

the following expression for W

W (q2, t2; q1, t1) =
∑
n

ϕn(q2)ϕ
∗
n(q1) e

− i
~En(t2−t1) . (2.24)

It is easily checked that (2.13) and (2.14) are indeed valid for this representation of W, as

a result of the fact that the eigenstates |n〉 form a complete orthonormal set. Observe that

(2.24) is precisely the evolution operator in the Schrödinger representation, so that wave

functions ψ(q, t) satisfy

ψ(q, t) =

∫
dq′ W (q, t; q′, t0) ψ(q′, t0). (2.25)

Therefore W must itself satisfy the Schrödinger equation, as follows indeed from (2.24),

i~
∂

∂t2
W (q2, t2; q1, t1) = i~

∑
n

(
− i

~
En

)
ϕn(q2)ϕ

∗
n(q1) e

i
~En(t1−t2)

=
∑
n

Hq2ϕn(q2)ϕ
∗
n(q1) e

i
~En(t1−t2)

= Hq2W (q2, t2; q1, t1) , (2.26)
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where Hq is the Hamilton operator in the coordinate representation.

Problem 2.1 : How will (2.23) change for a system described by the Hamiltonian H =
P 2

2m
f(Q) + V (Q)? Show that the action will acquire certain modifications of order ~, as a

result of the integrations over the pi.

Problem 2.2 : The free relativistic particle

When a free particle travels from one point to another, the obvious relativistic invariant is the

proper time, i.e. the time that it takes measured in the rest frame of the particle. During

an infinitesimal amount of time dt a particle with velocity q̇ is displaced over a distance

dq = q̇ dt. As is well-known, the corresponding time interval is shorter in the particle rest

frame, and equal to dτ =
√

1− (q̇/c)2dt, where c is the velocity of light. If we integrate the

proper time during the particle motion we have a relativistic invariant. Hence we assume a

Lagrangian

L = −mc2
√

1− (q̇/c)2 . (2.27)

Show that the momentum and energy are given by

p =
∂L

∂q̇
=

mq̇√
1− (q̇/c)2

,

E = q̇ · p− L =
mc2√

1− (q̇/c)2
, (2.28)

and satisfy the relation E2 = p2c2+m2c4. To study the Lorentz transformations is somewhat

involved, as we are not dealing with space-time coordinates, but with trajectories q(t). Under

Lorentz transformations both q and the time t transform, and an infinitesimal transformation

takes the form q′(t′) ≈ q(t) + v t with t′ ≈ t+ c−2(v · q(t)). This is enough to establish that

dτ is invariant and so is the action. In order to demonstrate this, derive the infinitesimal

transformation for the velocity,

(q̇)′(t′) ≈
[
1− v · q̇(t)

c2

]
q̇(t) + v . (2.29)

Note that the Hamiltonian is not invariant as p and E transform as a four-vector.

3 The classical limit

In the path integral one sums over all possible trajectories of a particle irrespective of whether

these trajectories follow from the classical equations of motion. However, in the limit ~ → 0
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one expects that the relevant contribution comes from the classical trajectory followed by

the particle. To see how this comes about, consider the path integral,

W =

∫
Dq e

i
~S[q(t)] , (3.1)

and note that for ~ → 0 the integrand exp( i~S) becomes a rapidly oscillating ”function” (or

rather a functional) of q(t). Therefore the integral (3.1) will tend to vanish. The dominant

contributions to the integral come from those q(t) at which S approaches an extremum:

δS[q(t)] = 0. This we recognize as Hamilton’s principle, according to which the classical

path is described by that function q0(t) for which the action has an extremum (note that we

are discussing paths that are all subject to the same boundary condition: q(t1,2) = q1,2). As

is well known, this function must then satisfy the Euler-Lagrange equations. We will make

this more explicit in due course.

The fact that we are dealing with a functional, rather than a function, makes our manip-

ulations more involved, and we will have functional derivatives, rather than ordinary deriva-

tives. Normally a derivative of a function f(x) is generated by a displacement x→ x + δx,

so that δf(x) = f ′(x) δx. For a functional F [f(x)] the functional derivative is generated by

f(x) → f(x) + δf(x) and the variation of F takes the form,

δF [f ] =

∫
dx

∂F [f ]

∂f(x)
δf(x) . (3.2)

This defines the functional derivative ∂F [f ]/∂f(x). Alternatively the functional derivative

can be understood by discretizing x into N parameters fi ≡ f(xi), so that F [f ] becomes

a function F (xi) of N variables. The integral in (3.2) is then replaced by a sum: δF =∑
i (∂F/∂fi) δfi. We have already used this approach in the previous chapter and the reader

is encouraged to consider such limiting expressions and verify that they lead to the correct

result in the continuum limit.

Let us now return to the path integral (3.1). In quantum mechanics the classical path is

somewhat smeared out; the deviations of the classical path are expected to be of order
√

~.

To study the quantum-mechanical corrections, let us expand the action about some solution

q0(t) of the equation of motion,

S[q(t)] = S[q0(t)]

+
1

2

∫
dt′1dt

′
2

∂2S[q(t)]

∂q(t′1)∂q(t
′
2)

∣∣∣
q=q0

(q(t′1)− q0(t
′
1))(q(t

′
2)− q0(t

′
2))

+
1

6

∫
dt′1dt

′
2dt
′
3

∂3S[q(t)]

∂q(t′1)∂q(t
′
2)∂q(t

′
3)

∣∣∣
q=q0

(q(t′1)− q0(t
′
1))(q(t

′
2)− q0(t

′
2))(q(t

′
3)− q0(t

′
3))

+ · · · . (3.3)
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Note that we suppressed the term proportional to ∂S[q(t)]/∂q(t′1) because q0 is a solution of

the equation of motion, so that δS[q0(t)] = 0. Substituting (3.3) into (3.1), W becomes

W = exp
( i

~
S[q0(t)]

)
(3.4)

×
∫
Dq exp

{ i

2~

∫
dt′1dt

′
2

∂2S[q(t)]

∂q(t′1)∂q(t
′
2)

∣∣∣
q=q0

(q(t′1)− q0(t
′
1))(q(t

′
2)− q0(t

′
2)) + · · ·

}
,

where the terms in parentheses represent the quantum-mechanical corrections. It is conve-

nient to replace the integration variables q(t) by q0(t) +
√

~q(t), so that, up to an irrelevant

Jacobian factor, which can be absorbed into the integration measure, we have

W ∝
∫
Dq exp

( i
~

{
S[q0(t)]

+
~
2

∫
dt′1dt

′
2

∂2S[q(t)]

∂q(t′1)∂q(t
′
2)

∣∣∣
q=q0

q(t′1) q(t
′
2) (3.5)

+
~3/2

6

∫
dt′1dt

′
2dt
′
3

∂3S[q(t)]

∂q(t′1)∂q(t
′
2)∂q(t

′
3)

∣∣∣
q=q0

q(t′1) q(t
′
2) q(t

′
3) + · · ·

})
.

Observe that the new integration variable q(t) satisfies the boundary conditions q(t1,2) = 0.

The functional derivatives of the action are taken at the classical solution q0(t) and they are

therefore not affected by the change of variables.

Let us now recall the following equalities,∫ ∞
−∞

dx1 · · · dxn e−(x,Ax) = πn/2(detA)−
1
2 , (3.6)

detA = eln detA = eTr lnA, (3.7)

where A is an n× n matrix and

(x,Ax) ≡
∑
i,j

xiAijxj. (3.8)

It is possible to use analogous expressions for functions. One replaces the continuous time

variable by a finite number of discrete points, just as in the limiting procedure employed in the

previous chapter. Integrals then take the form of sums and, for instance, the term containing

∂2S/∂q(t′1)∂q(t
′
2) in (3.4) can be written as (q, Sq), where Sij is a matrix proportional to

∂2S/∂q(t′i)∂q(t
′
j) and qi ≡ q(t′i). Using the analogue of (3.6-3.7), W can be written as

W ∝ exp
( i

~

{
S[q0(t)] + 1

2
i~ δ(0)

∫
dt′1dt

′
2 δ(t

′
1 − t′2) ln

∂2S[q(t)]

∂q(t′1)∂q(t
′
2)

∣∣∣
q=q0

+O(~2)

})
, (3.9)

where δ(t′1 − t′2) establishes that the trace is taken; δ(0) represents the inverse separation

distance between the discrete time points before taking the continuum limit. In this limit
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we thus encounter a divergence. In practice we will try to avoid expressions like these and

try to rewrite determinants as much as possible in terms of Gaussian integrals. (Observe

that in this result we have absorbed certain q0-independent multiplicative terms in the path

integral.) Of course, we can also write the above formula as

W ∝
[
det
( ∂2S[q(t)]

∂q(t′1)∂q(t
′
2)

∣∣∣
q=q0

)]−1/2

exp
( i

~

{
S[q0(t)] +O(~2)

})
, (3.10)

where we have introduced the determinant of a functional differential operator (subject to the

appropriate boundary conditions; therefore this differential operator usually has a discrete

eigenvalue spectrum). Note that the prefactor in (3.10) does not depend on ~ although it

represents a quantum-mechanical correction. When suppressing the order ~2 terms in the

exponent (3.10) is referred to as the semiclassical approximation.

Let us now derive the following useful result. If the action is at most quadratic in q(t),

we only have the second-order term proportional to ∂2S[q(t)]/∂q(t′1)∂q(t
′
2) in (3.5), which

is independent of q1 and q2. Furthermore the boundary condition (q(t1,2) = 0) in the path

integral (3.5) does not refer to q1,2 either. Therefore the full dependence on q1,2 is contained

in the classical result Scl ≡ S[q0], so that W reduces to

W (q2, t2; q1, t1) = f(t1, t2) exp

(
i

~
Scl

)
. (3.11)

In most theories the Lagrangian does not depend explicitly on the time. In that case the

path integral depends only on the difference t2 − t1. This conclusion is in accord with the

representation (2.24). Hence we may write

W (q2, t2; q1, t1) = f(t2 − t1) exp

(
i

~
Scl

)
. (3.12)

The function f can be determined by various methods. Either one imposes the product

rule (2.13) (although this may lead to technical difficulties in view of the factor i in the

exponent) or one derives a first-order differential equation for f which follows from the

Schrödinger equation (2.26), in which case one needs (2.14) to fix the overall normalization

of f . If one of the eigenfunctions of the Schrödinger equation is explicitly known, one may

also determine f from (2.25).

We will now describe the transition from classical mechanics to quantum mechanics in a

more formal manner (which was first proposed by Dirac). In classical mechanics, the equa-

tions of motion follow from a variational principle, known as Hamilton’s principle, according

to which the classical trajectory is the one for which the action acquires an extremum,

δS[q(t)] = 0, (3.13)
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where

S[q(t)] =

∫
dt L(q, q̇) (3.14)

is the action, and L(q(t), q̇(t)) is the Lagrangian of the system. The conjugate momentum

is defined by

p ≡ ∂L

∂q̇
. (3.15)

and the differential equation corresponding to (3.13) is the Euler-Lagrange equation

d

dt
p =

∂L

∂q
. (3.16)

The Hamiltonian is given by

H(p, q) ≡ p q̇ − L(q, q̇) . (3.17)

Observe that this relation takes the form of a Legendre transform. Note that the Hamiltonian

is a function of the phase space variables p and q. From

δH =
∂H

∂q
δq +

∂H

∂p
δp

= δp q̇ +
(
p− ∂L

∂q̇

)
δq̇ − ∂L

∂q
δq , (3.18)

we deduce that the Euler-Lagrange equations can be expressed in terms of Hamilton’s equa-

tions

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
. (3.19)

This equation can be written with the help of so-called Poisson brackets,

dq

dt
= (q,H),

dp

dt
= (p,H), (3.20)

where the Poisson bracket for two functions A(p, q) and B(p, q) is defined as

(A,B) ≡ ∂A

∂q

∂B

∂p
− ∂A

∂p

∂B

∂q
. (3.21)

Note that

(q, p) = 1 , (3.22)

and that the time evolution of some function u of the coordinate and momentum, u(q(t), p(t); t),

is given by
du

dt
= (u,H) +

∂u

∂t
. (3.23)
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In quantum mechanics the coordinates and momenta become operators and the Poisson

brackets are replaced by (i~)−1 times the commutator. Therefore we obtain in the Heisenberg

picture (where operators are time-dependent),

[Q(t), P (t′)]t=t′ = i~ (3.24)

and
dU

dt
=

1

i~
[U,H] +

∂U

∂t
, (3.25)

where U is some operator depending on Q(t), P (t) and t. This result is in one-to-one

correspondence with the classical result (3.23). This feature is the motivation for using the

Heisenberg picture in field theory.

The Feynman path integral leads to an alternative description of quantum mechanics,

where the time evolution is encoded in the transition function,

W (q2, t2; q1, t1) =

∫
Dq exp

(
i

~
S[q(t)]

)
. (3.26)

Both the conventional operator formalism and the path integral formalism have advan-

tages and disadvantages, depending on the particular application that one is considering.

Often insights from both descriptions are combined, a strategy that sometimes leads to

surprising results.

Problem 3.1 : The free particle

The Lagrangian is given by

L = 1
2
mq̇2. (3.27)

The equation of motion implies that the velocity must be constant. Therefore the velocity

equals

q̇ =
q2 − q1
t2 − t1

.

It is now easy to calculate the action for a solution of the equation of motion subject to the

proper boundary conditions,

Scl =

∫ t2

t1

dt′
m

2

(
q2 − q1
t2 − t1

)2

=
m

2(t2 − t1)
(q2 − q1)

2. (3.28)

According to (3.12) the path integral takes the form

W = f(t2 − t1) exp

{
im

2~
(q2 − q1)

2

t2 − t1

}
,
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where f can be determined by imposing the Schrödinger equation (2.26). This leads to the

following differential equation for f ,

∂f

∂t2
+

f

2(t2 − t1)
= 0 .

Show that, up to a multiplicative constant, this leads to

W (q2, t2; q1, t1) =

√
m

2πi~(t2 − t1)
exp

{
im

2~
(q2 − q1)

2

t2 − t1

}
. (3.29)

Problem 3.2 :

Check by using (2.14) that (3.29) is properly normalized and verify the product rule (2.13).

Problem 3.3 : The harmonic oscillator

From the Lagrangian

L = 1
2
mq̇2 − 1

2
mω2q2, (3.30)

one easily proves the following results. The classical solution for q(t) is given by

q(t) =
1

sinω(t2 − t1)

(
q2 sinω(t− t1)− q1 sinω(t− t2)

)
, (3.31)

whereas the corresponding classical action equals

Scl =
mω

2 sinω(t2 − t1)

{
(q2

1 + q2
2) cosω(t2 − t1)− 2q1q2

}
. (3.32)

The path integral is again of the form (3.12). Show that it satisfies the Schrödinger equation

when

f(t2 − t1) =

√
mω

2πi~ sinω(t2 − t1)
,

so that

W (q2, t2; q1, t1) =

√
mω

2πi~ sinω(t2 − t1)

× exp

{
imω

2~ sinω(t2 − t1)

[
(q2

1 + q2
2) cosω(t2 − t1)− 2q1q2

]}
.(3.33)

Explain the singularities that arise when t2 − t1 = nπ/ω.

Problem 3.4 : The evolution operator

Verify the validity of (2.25) for the harmonic oscillator with ψ(q, t) the groundstate wave

function, using (3.33),

ψ(q, t) = ϕ0(q) exp(−1
2
iωt) =

(mω
π~

) 1
4
exp

(
−mω

2~
q2 − 1

2
iωt
)
.
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This confirms that W is thus the evolution operator in the coordinate representation.

Problem 3.5 : The Gel’fand-Yaglom method

From (3.5) it follows that the transition function for a particle on a line with potential energy

V (q) can be approximated by (semi-classical approximation),

W ' F (tN , t0) exp

{
i

~
S[q0(t)]

}
,

where the prefactor is given by the path integral

F (tN , t0) =

∫
dqN−1 . . .

∫
dq1

( m

2πi~∆

)N/2
~(N−1)/2 (3.34)

× exp

{
i∆

N−1∑
i=0

[
m

2

(qi+1 − qi)
2

∆2
− m

2
ω2
i q

2
i

]}
,

with qN = q0 = 0 and mω2(t) ≡ d2V (q)/dq2|q(t)=q0(t). To calculate such path integrals there

exists a general method due to Gel’fand and Yaglom. Their method is as follows.

Show that the exponent in the integrand can be written as

im

2∆
qiAij(ω) qj ,

where qi are the components of an (N − 1)-component vector (qN−1, . . . , q1) and Aij(ω) are

the elements of an (N − 1)× (N − 1) matrix equal to

AN−1(ω) =


2−∆2ω2

N−1 −1 0 ·
−1 2−∆2ω2

N−2 −1 ·
0 −1 2−∆2ω2

N−3 ·
· · · ·

 .

Performing the integrations we thus find the result

F (tN , t0) = lim
N→∞

√
m

2πi~∆

[
detAN−1(ω)

]−1
2
.

Observe that this expression depends on q0(t) through the ωi.

We now introduce

ΨN ≡ ∆ detAN(ω) .

Show that ΨN obeys the difference equation

ΨN = (2−∆2ω2
N) ΨN−1 −ΨN−2 ,
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with Ψ1 = ∆(2 − ∆2ω2
1) and Ψ2 = Ψ1 + ∆ + O(∆3). In the continuum limit we therefore

obtain
d2Ψ(t, t0)

dt2
= −ω2(t)Ψ(t, t0) .

with the initial conditions Ψ(t, t0) = 0 and dΨ(t, t0)/dt = 1 for t = t0. Moreover, the desired

expression for ∆ detA(ω) then equals Ψ(tN), thus

F (tN , t0) =

√
m

2πi~Ψ(tN , t0)
.

Problem 3.6 : Show that the Gel’fand-Yaglom method leads also to the results (3.29) and

(3.33) in the case ω(t) = 0 or ω(t) = ω, respectively.

Problem 3.7 : Verify the correctness of (3.9) by uniformly scaling the operator δ2S/δq(t′1)δq(t
′
2)

by a constant. Evaluate the effect of this scaling both directly and by returning to the corre-

sponding term in (3.5). To obtain agreement, it is important to regard the various quantities

as (infinite-dimensional) matrices.

Problem 3.8 : The path integral in phase space

Consider the transition function W (qN , tN ; q0, t0) ≡ tN 〈qN |q0〉t0 for a particle on a line.

According to (2.17) it can be written as a path integral over phase space. In this path

integral, we are dealing with N p-integrations, but only N − 1 q-integrations. Therefore it

is natural to consider instead the transition function W (pN , tN ; q0, t0) ≡ tN 〈pN |q0〉t0 , which

can be obtained by making use of (2.5).

i) From (2.17) derive a discrete expression for W (pN , tN ; q0, t0) and subsequently take the

continuum limit N → ∞ to obtain a phase-space path integral based on two paths,

p(t) and q(t). Specify the boundary conditions for both these paths.

From here you are supposed to only make use of the continuum expressions for the transition

function. This expression is very similar to that for the fermionic path integral, which we

will introduce in a later chapter. Note, in particular, that the action contains a boundary

term and is only linear in time derivatives.

ii) Determine the ‘action’ S[p(t), q(t)] that appears in the exponent of the integrand of

the path-integral representation for W (p′, t′; q, t). Do not overlook a boundary term.

iii) Express the transition function W (p′′, t′′; q, t) in terms of the transition functions

W (p′′, t′′; q′, t′) and W (p′, t′; q, t) with t′′ > t′ > t. Make use of the completeness of

the states {|p〉} and {|q〉}.
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iv) Derive from W (p′, t′; q, t) (or obtain directly from (2.17)) a path integral expression for

W (q′, t′; p, t) ≡ t′〈q|p〉t. Extract again the relevant action and specify the boundary

conditions for the path integrations over p(t) and q(t).

vi) Prove by means of the above action that the classical limit ~ → 0 gives rise to Hamil-

ton’s equations with corresponding boundary conditions for p(t) and q(t).

vii) Argue that the unirarity of the evolution operator implies [W (p′, t′; q, t)]∗ = W (q, t; p′, t′)

and prove that this equation is satisfied for the path integral representation.

Problem 3.9 : Jacobi identity for Poisson brackets and commutators

In (3.21) we introduced the Poisson bracket. Show that it satisfies the Jacobi identity,

(A, (B,C)) + (B, (C,A)) + (C, (A,B)) = 0 . (3.35)

Subsequently show that the same identity is satisfied for commutators of matrices.

Problem 3.10 : A conserved quantity

Consider the Lagrangian for a particle in two dimensions with coordinates q(t) = (q1(t), q2(t)),

moving in some potential,

L = 1
2
m(q̇2

1 + q̇2
2)− 1

2
mω2(q2

1 + q2
2)− λ(q2

1 + q2
2)

2 . (3.36)

i) Argue that the Lagrangian is invariant under two-dimensional rotations of the coor-

dinates q1 and q2. Show that an infinitesimal rotation corresponds to δq1 = θq2 and

δq2 = −θq1, where θ is the infinitesimal rotation angle. Prove that this transformation

leaves the Lagrangian invariant.

ii) Allow the infinitesimal rotation parameter θ to depend on time and evaluate again

the variation of the Lagrangian under an infinitesimal rotation. Assuming θ(t1) =

θ(t2) = 0, write the variation of the action in the form δS[q(t)] =
∫ t2
t1

dt θ(t) Q̇(t) and

determine Q(t).

iii) Use Hamilton’s principle and the boundary conditions on θ(t) to argue that Q(t) is a

conserved quantity, i.e. it does not depend on the time. Verify this also by explicit

calculation.

iv) Write down the momenta p and express Q in terms of coordinates and momenta. Write

down the expression for the Hamilonian and the canonical commutation relations of

coordinates and momenta.
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v) Write down the commutators of the Hamiltonian with the coordinate and momentum

operators. Determine also the commutation relations of Q with the coordinate and

momentum operators. Can you establish a relation between the latter commutators

and the infinitesimal rotations?

vi) Evaluate the commutator [Q,H] and interpret the result.

4 Continuous systems

Until now we have discussed a system with a finite number of degrees of freedom. The

transition to an infinite number of degrees of freedom is necessary for the treatment of

continuous systems, such as a vibrating solid, since their motion is described by specifying

the position coordinates of all points of the solid. The continuum case can be understood

as the appropriate limit of a system with a finite number of discrete coordinates. (The text

below is taken from De Wit & Smith).

We illustrate this procedure for an elastic rod of fixed length l, undergoing small longitu-

dinal vibrations. The continuous rod can be approximated by a set of discrete coordinates

representing a long chain of n equal mass particles spaced a distance a apart and connected

by n+ 1 uniform massless springs having force constants k. The total length of the system

equals l = (n + 1)a. If the displacement of the i-th particle from its equilibrium position is

measured by the quantity φl then the kinetic energy of this one-dimensional lattice is

T = 1
2

n∑
i=1

mφ̇2
i , (4.1)

where m is the mass of each particle. The potential energy is the sum of n + 1 potential

energies of each spring as the result of being stretched or compressed from its equilibrium

length (note that φ0 = φn+1 = 0),

V = 1
2

n∑
i=0

k(φi+1 − φi)
2 , (4.2)

where k is some constant. The force on the ith particle follows from the potential via

Fi = −∂V/∂φi:

Fi = k(φi+1 − φi)− k(φi − φi−1) = k(φi+1 + φi−1 − 2φi) .

The force thus decomposes into two parts; the force exerted by the spring on the right of

the ith particle, equal to k(φi+1 − φi), and the force exerted by the spring on the left, equal
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to k(φi − φi−1). Combining (4.1) and (4.2) gives the Lagrangian

L = T − V = 1
2

n∑
i=1

mφ̇2
i − 1

2

n∑
i=0

k(φi+1 − φi)
2 . (4.3)

The corresponding Euler-Lagrange equations yield Newton’s law m
..

φi = Fi.

In order to describe the elastic rod we must take the continuum limit of the system

discussed above. Hence we increase the number of particles to infinity (n → ∞) keeping

the total length l = (n + 1)a, and the mass per unit length µ = m/a fixed. Furthermore

Y = ka must be kept fixed as well; this follows from Hooke’s law, which tells us that the

extension of the rod per unit length is directly proportional to the force exerted on the rod,

with Young’s modulus being the constant of proportionality. In the discrete case the force

between two particles is F = k(φi+1− φi), and the extension of the interparticle spacing per

unit length is (φi+1 − φi)/a; hence we identify Y = ka as Young’s modulus which should be

kept constant in the continuum limit.

Rewriting the Lagrangian (4.3) as

L = 1
2

n∑
i=1

a
(m
a
φ̇2
i

)
− 1

2

n∑
i=0

a(ka)
(φi+1 − φi

a

)2

, (4.4)

it is straightforward to take the limit a→ 0, n→∞ with l = (n+1)a, µ = m/a and Y = ka

fixed. The continuous position coordinate x now replaces the label i, and φi becomes a

function of x, i.e. φi → φ(x). Hence the Lagrangian becomes an integral over the length of

the rod

L = 1
2

∫ l

0

dx [µ φ̇2 − Y (∂xφ)2] , (4.5)

where we have used

lim
a→0

φi+1 − φi
a

= lim
a→0

φ(x+ a)− φ(x)

a
=
∂φ

∂x
≡ ∂xφ .

Also the equation of motion for the coordinate φi can be obtained by this limiting procedure.

Starting from

m

a

..

φi − ka
φi+1 + φi−1 − 2φi

a2
= 0 , (4.6)

and using

lim
a→0

φi+1 + φi−1 − 2φi
a2

=
∂2φ

∂x2
≡ ∂xxφ ,
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the equation of motion becomes

µ
..

φ− Y ∂xxφ = 0 . (4.7)

We see from this example that x is a continuous variable replacing the discrete label i. Just

as there is a generalized coordinate φi for each i, there is a generalized coordinate φ(x) for

each x, i.e. the finite number of coordinates φi has been replaced by a function of x. In fact

φ depends also on time, so we are dealing with a function of two variables. This function

φ(x, t) is called the displacement field, and φ̇ = ∂tφ and ∂xφ are its partial derivatives with

respect to time and position.

The Lagrangian (4.5) appears as an integral over x of

L = 1
2
µφ̇2 − 1

2
Y (∂xφ)2 , (4.8)

which is called the Lagrangian density. In this case it is a function of φ(x, t) and its first-

order derivatives ∂tφ(x, t) and ∂xφ(x, t), but one can easily envisage further generalizations.

It has become common practice in field theory to simply call the Lagrangian density the

Lagrangian, as the space integral of the Lagrangian density will no longer play a role. What

is relevant is the action, which can now be written as an integral over both space and time,

i.e.

S[φ(x, t)] =

∫ t2

t1

dt

∫ l

0

dxL(φ(x, t), φ̇(x, t), ∂xφ(x, t)) . (4.9)

It is a functional of φ(x, t), i.e. it assigns a number to any function of space and time.

It is possible to obtain the equations of motion for φ(x, t) directly from Hamilton’s prin-

ciple by following the same arguments as in the previous chapter. One then investigates the

change in the action under an infinitesimal change in the fields

φ(x, t) → φ(x, t) + δφ(x, t) ,

∂tφ(x, t) → ∂tφ(x, t) +
∂

∂t
δφ(x, t) , (4.10)

∂xφ(x, t) → ∂xφ(x, t) +
∂

∂x
δφ(x, t) ,

leading to

δS[φ(x, t)] = S[φ(x, t) + δφ(x, t)]− S[φ(x, t)]

=

∫ t2

t1

dt

∫ l

0

dx
{ ∂L
∂φ(x, t)

δφ(x, t) +
∂L

∂(∂tφ(x, t))

∂

∂t
δφ(x, t)

+
∂L

∂(∂xφ(x, t))

∂

∂x
δφ(x, t)

}
. (4.11)
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Integrating the second and third terms by parts∫ t2

t1

dt
∂L

∂(∂tφ)

∂

∂t
δφ =

∂L
∂(∂tφ)

δφ
∣∣∣t2
t1
−
∫ t2

t1

dt
∂

∂t

( ∂L
∂(∂tφ)

)
δφ ,∫ l

0

dx
∂L

∂(∂xφ)

∂

∂x
δφ =

∂L
∂(∂xφ)

δφ
∣∣∣t2
t1
−
∫ l

0

dx
∂

∂x

( ∂L
∂(∂xφ)

)
δφ ,

leads to

δS[φ(x, t)] =

∫ t2

t1

dt

∫ 1

0

dx δφ
{∂L
∂φ

− ∂

∂t

( ∂L
∂(∂tφ)

)
− ∂

∂x

( ∂L
∂(∂xφ)

)}
+

∫ l

0

dx
∂L

∂(∂tφ)
δφ
∣∣∣t=t2
t=t1

+

∫ t2

t1

dt
∂L

∂(∂xφ)
δφ
∣∣∣x=l
x=0

. (4.12)

Hamilton’s principle requires that the action be stationary with respect to infinitesimal

variations of the fields that leave the field values at the initial and final time unaffected, i.e.

φ(x, t1) = φ1(x) and φ(x, t2) = φ2(x). Therefore we have δφ(t1, x) = δφ(t2, x) = 0. On the

other hand, because the rod is clamped, the displacement at the endpoints must be zero,

i.e. δφ(x, t) = 0 for x = 0 and x = l. Under these circumstances the last two terms in (4.12)

vanish, and Hamilton’s principle gives

∂

∂t

( ∂L
∂(∂tφ)

)
+

∂

∂x

( ∂L
∂(∂xφ)

)
− ∂L
∂φ

= 0 (4.13)

This is the Euler-Lagrange equation for a continuous system. As a check one can insert

the Lagrangian (4.8) into (4.13) to derive the equation of motion, which indeed gives (4.7).

Note that with a suitable choice of units we can write the Lagrangian (4.8) as

L = −1
2
(∂xφ)2 + 1

2
(∂tφ)2 . (4.14)

The generalization to continuous systems in more space dimensions is now straightforward,

and one can simply extend the definitions of the Lagrangian and the Euler-Lagrange equa-

tions. For example, in two dimensions one may start with a two-dimensional system of

springs. The displacement of the particle at the site labelled by (i, j) is measured by the

quantity φij(t), which is a two-dimensional vector. In the limit when we go to a continu-

ous system this becomes the two-dimensional displacement field φ(x, y, t), of a membrane

subjected to small vibrations in the (x, y) plane.

Problem 4.1 : A vibrating membrane

Consider a membrane (for instance of a drum) and let the field φ(x, y, t) measure the dis-

placement of the membrane in the direction orthogonal to the membrane. Argue that for
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small oscillations the relevant Lagrangian density takes the form

L = −1
2
Y (∂xφ)2 − 1

2
Y (∂yφ)2 + 1

2
µ(∂tφ)2 , (4.15)

in rescaled units. Give possible reasons for suppressing a term proportional to ∂x∂yφ and

for choosing equal coefficient for the first two terms. Derive the corresponding Euler-

Lagrange equations. Write down the normal modes (characterized by a well-defined fre-

quency) for a square membrane where 0 ≤ x, y ≤ L. Thes normal modes can be written

as sin kxx sin kyy cos(ωt + α), where the kx, ky are the wave numbers and ω denotes the

frequency. Express these in terms of Y and µ.

5 Field theory

As we have seen above, the action S in field theory is no longer a function of a finite number

of coordinates, but of fields. These fields are functions defined in a d-dimensional space-time,

parametrized by the time t and by d− 1 spatial coordinates. Henceforth we use a d-vector

notation, xµ = (~x, t). Usually we will consider Lorentz invariant field theories. There are

many such theories, but the simplest ones are based on scalar fields φ(~x, t). Here the field

is the dynamical variable and the coordinates ~x should be regarded as labels; they simply

specify the value of φ at a given point in space and time. For instance, a standard action

for a single scalar field φ(x) = φ(~x, t) is given by

S[φ(x)] =

∫
ddx

{
−1

2
(∂µφ(x))2 − 1

2
m2φ2(x)

}
=

∫
dt

∫
dd−1x

{
1
2
(∂tφ)2 − 1

2
(~∇φ)2 − 1

2
m2φ2

}
, (5.1)

which is indeed Lorentz invariant, owing to the fact that we adopted a metric with signature

(−1, 1, . . . , 1), corresponding to the Lorentz-invariant inner product x2 = ~x2 − t2. Observe

that here, and throughout these notes, we choose units where c = 1. The field equation (or

equation of motion) corresponding to (5.1) is the Klein-Gordon equation,

(∂2
µ −m2)φ = 0. (5.2)

The action (5.1) describes a free scalar field; interactions will be described by terms of higher

order in φ.

The expression in parentheses in (5.1) is called the Lagrangian density, denoted by L,

because its integral over space defines the Lagrangian,

S[φ] =

∫
dt

∫
dd−1x L(φ(x), ∂µφ(x)) =

∫
dt L. (5.3)
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In order to see that the action (5.1) describes an infinite number of degrees of freedom,

we may decompose the field φ(~x, t) in terms of a complete set of functions Y A(~x),

φ(~x, t) =
∑
A

φA(t)Y A(~x). (5.4)

When {A} is a continuous set, the sum is replaced by an integral. In this particular case,

we may consider

φ(~x, t) = (2π)−
d−1
2

∫
dd−1k φ~k(t) e

i~k·~x. (5.5)

Substituting this expansion into (5.1) we get

S[φ] =

∫
dt

{∫
dd−1k 1

2

[
|φ̇~k(t)|

2 − (~k2 +m2)|φ~k(t)|
2
]}

, (5.6)

where we used that for a real scalar field [φ~k(t)]
∗ = φ−~k(t), as can be seen from (5.5). We

recognize (5.6) as the action for an infinite set of independent harmonic oscillators with

frequencies
√
~k2 +m2. (See problem 1.1.)

Let us therefore momentarily return to the case of a single harmonic oscillator. The

Lagrangian is equal to

L = 1
2
mq̇2 − 1

2
mω2q2. (5.7)

Defining the canonical momentum in the standard way,

p ≡ ∂L

∂q̇
= mq̇, (5.8)

the Hamiltonian reads (from now on it should be clear from the context when p and q are

operators, and we will no longer indicate this by using P and Q)

H ≡ pq̇ − L =
p2

2m
+ 1

2
mω2q2. (5.9)

We introduce the raising and lowering operators, a† and a,

a =
1√

2m~ω

(
mω q + ip

)
,

a† =
1√

2m~ω

(
mω q − ip

)
. (5.10)

The canonical commutation relations (3.24) imply that

[a, a†] = 1. (5.11)
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Clearly, a is not an hermitean operators, unlike p and q. Using the inverse of (5.10),

q =

√
~

2mω

(
a+ a†

)
,

p = −imω
√

~
2mω

(
a− a†

)
, (5.12)

we rewrite the Hamiltonian as

H = 1
2
~ω(a a† + a† a) = ~ω(a† a+ 1

2
). (5.13)

In the Heisenberg picture we have time-dependent operators a(t) and a†(t),

a(t) = e
i
~Hta e−

i
~Ht, a†(t) = e

i
~Hta† e−

i
~Ht, (5.14)

which satisfy
da

dt
=
i

~
[H, a],

da†

dt
=
i

~
[H, a†]. (5.15)

Note that, since [H, a] = −~ω a and [H, a†] = ~ω a†, we can easily derive that

a(t) = a e−iωt, a†(t) = a† eiωt. (5.16)

Obviously in this picture we have the same decomposition as in (5.12),

q(t) =

√
~

2mω

(
a(t) + a†(t)

)
,

p(t) = −imω
√

~
2mω

(
a(t)− a†(t)

)
. (5.17)

Note that the operators q(t) and p(t) satisfy the classical equations of motion, mq̇ = p and

ṗ = −mω2 q. It is straightforward to calculate the commutators of the Heisenberg operators.

First note that [a(t), a(t′)] = [a†(t), a†(t′)] = 0 and [a(t), a†(t′)] = exp iω(t′ − t), so that we

derive

[q(t), q(t′)] =
~

2mω

(
[a(t), a†(t′)] + [a†(t), a(t′)]

)
= − ~i

mω
sinω(t− t′). (5.18)

Analogously,

[q(t), p(t′)] = i~ cosω(t− t′). (5.19)

For t = t′, (5.18) vanishes and (5.19) yields i~, which are the expected equal-time results.
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We now return to the field theory defined by (5.1). The canonical momentum is defined

by the functional derivative of the Lagrangian (regarded as a functional over φ(~x, t) and

φ̇(~x, t) for given t),

π(~x, t) ≡ ∂L[φ, φ̇]

∂φ̇(~x, t)
. (5.20)

For the case at hand, this yields

π(~x, t) = φ̇(~x, t). (5.21)

The Hamiltonian equals

H[φ, π] =

∫
dd−1x

{
πφ̇− L

}
=

∫
dd−1x

{
1
2
π2 + 1

2
(~∇φ)2 + 1

2
m2φ2

}
, (5.22)

and is a functional of φ(~x, t) and π(~x, t). Similar to what was done for a simple system

depending on one degree of freedom (see the text following (3.17)) we may establish that

the variation of the Hamiltonian reads

δH =

∫
dd−1x

{
δπ φ̇+

[
π − ∂L

∂φ̇

]
δφ̇− ∂L

∂φ
δφ
}

=

∫
dd−1x

{∂H
∂π

δπ +
∂H

∂φ
δφ
}
, (5.23)

where, in the second line, we used the Euler-Lagrange equations.

Since this field theory describes just an infinite set of harmonic oscillators, its quantization

is obvious. In analogy with (5.17) the field, which now represents an operator acting on a

quantum-mechanical Hilbert space, can be decomposed in creation and absorption operators.

In the Heisenberg picture we thus find (see also problem 5.1)

φ(~x, t) =

√
~

(2π)d−1

∫
dd−1k√

2k0

{
a(~k) ei

~k·~x−ik0t + a†(~k) e−i
~k·~x+ik0t

}
,

π(~x, t) =

√
~

(2π)d−1

∫
dd−1k√

2k0

(−ik0)
{
a(~k) ei

~k·~x−ik0t − a†(~k) e−i
~k·~x+ik0t

}
, (5.24)

where the frequencies are given by k0 =
√
~k2 +m2. The reason for the factor (2k0)

−1/2 in

the integrands is follows from substituting m = 1 and ω = k0 in the expressions for a single

harmonic oscillator. Note that φ(~x, t) is a solution of the field equation (5.2), so that the field

satisfies the classical equation of motion. Canonical commution relations are now effected

by

[φ(~x, t), π(~x ′, t′)]t=t′ = i~ δd−1(~x− ~x ′), (5.25)
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which is equivalent to

[a(~k), a†(~k ′)] = δd−1(~k − ~k ′). (5.26)

We may also consider the analogue of (5.18) and compute the commutator for the field

operators at different space-time points. When these two points, say (~x, t) and (~x ′, t′), are

separated by a space-like distance, so that (~x − ~x′)2 > (t − t′)2, this commutator should

vanish, because we can always transform to another Lorentz frame such that the two points

are at equal time. Let us verify that this is indeed the case. Using (5.24) we evaluate (cf.

(5.18))

[φ(~x, t), φ(~x ′, t′)] =
~

(2π)d−1

∫
dd−1k dd−1k′√

4k0k′0

{
ei
~k·~x−ik0t−i~k ′·~x ′+ik′0t′ [a(~k), a†(~k ′)]

+e−i
~k·~x+ik0t+i~k ′·~x ′−ik′0t′ [a†(~k), a(~k ′)]

}
,

=
2i~

(2π)d−1

∫
dd−1k

2k0

sin k ·(x− x′). (5.27)

In this integral, the scalar product k·(x− x′) = ~k · (~x− ~x′)− k0(t− t′) is Lorentz invariant.

Furthermore, it can be shown that the integral
∫

dd−1k
2k0

is also Lorentz invariant, so that

(5.27) is a Lorentz invariant function. If x − x′ is a space-like vector, we can exploit the

Lorentz invariance of (5.27) by performing a Lorentz transformation such that t becomes

equal to t′. Then it is obvious that (5.27) vanishes because the integrand is odd in ~k.

So we conclude that [φ(x), φ(x′)] = 0 whenever x and x′ are separated by a space-like

distance. This phenomenon is known as local commutativity, a fundamental property that

any relativistic field theory should satisfy. Local quantum operators taken at points that are

not causally connected, commute.

5.1 Second quantization

We started by introducing field theories as a system of infinitly many degrees of freedom.

However, there is a dual interpretation which is known under the term ‘second quantization’.

By first quantization one means the usual quantum mechanics, used to describe a system

with a finite number of degrees of freedom. For instance, take a free particle, whose states

are described in terms of a wave number or a momentum vector, say ~p. Both classically and

quantum-mechanically the energy of this state is determined in terms of the momentum and

denoted by E~p. The precise dependence of E~p on ~p is not important. For instance, for a free

relativistic particle of mass µ we would have E~p =
√
~p 2 + µ2, while in the nonrelativistic

case we have E~p = 1
2
~p 2/µ. Now one introduces a Hilbert space, called Fock space, consisting

of states that describe an arbitrary number of free particles. Assuming that the particles
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are bosons, the multiparticle states should be symmetric under interchange. Therefore it is

sufficient to specify the occupation numbers n~p which give the number of particles with the

same momentum ~p. The vacuum (or groundstate) of the Fock space is denoted by |0〉, and

is the state that contains no particles. Then we have the one-particle states |~p 〉, the two-

particle states |~p , ~p ′ 〉, and so on. Using the occupation numbers, we can generally denote

these states by

|n~p1 , n~p2 , n~p3 , . . .〉, with n~pi
= 0, 1, 2, . . . , (5.28)

where ~pi are the possible momenta. The energy of these states is given by

E(n~pi
) =

∑
i

n~pi
E~pi

. (5.29)

In the Fock space we can define creation and annihilation operators, which increase or

decrease the occupation numbers by 1. They are defined by

a(~pi) |n~p1 , n~p2 , . . . , n~pi
, . . .〉 =

√
n~pi

|n~p1 , n~p2 , . . . , n~pi
− 1, . . .〉,

a†(~pi) |n~p1 , n~p2 , . . . , n~pi
, . . .〉 =

√
n~pi

+ 1 |n~p1 , n~p2 , . . . , n~pi
+ 1, . . .〉. (5.30)

With this definition, one can show that

[a(~pi), a
†(~pj)] = δij. (5.31)

The energy of the multiparticle states (cf. 3.27) are given by the eigenvalues of the Hamil-

tonian

H0 =
∑
i

a†(~pi) a(~pi)E~pi
. (5.32)

It is easy to introduce interactions into this theory by including terms of higher order in

the operators a and a†. For instance, the term

Hint =
∑
i,j,k,l

δ(~pi + ~pj − ~pk − ~pl)Vijkl a
†(~pi) a

†(~pj) a(~pk) a(~pl), (5.33)

describes a four-particle interaction in which two particles are annihilated and two other

particles are created. The delta function in (5.33) ensures momentum conservation.

The key observation is that the energy spectrum for the multiparticle states coincides with

the spectrum of a system of infinitely many harmonic oscillators with frequencies ~−1E~pi
.

Using the operators a and a† we can now write down fields φ(~x, t) by using the expression

(5.24) with ~k = ~−1~p and k0 = ~−1E~p. The above results can then be cast in the form of a

field theory, which, upon quantization, leads to the same Fock space operators as above. For

a system of relativistic particles, where E~p =
√
~p2 + µ2, this system of harmonic oscillators
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is precisely described by the field theory defined by (5.1), with m = µ/~. In particular, the

Hamiltonian H0 is equal to (5.22), up to an infinite “zero-point” energy

〈0|H|0〉 = 1
2

∑
i

√
~p2
i + µ2. (5.34)

This is one of the characteristic infinities that emerge in quantum field theory, caused by

the presence of an infinite number of degrees of freedom. We will return to these infinities

in due course.

Observe that there is a subtlety with regard to calling a theory “free”. The theory of

harmonic oscillators corresponding to (5.32) is not regarded as a free theory from the point

of view of first quantization, while in the context of a second quantized system it is regarded

as free of interactions.

Finally we note that in this perspective, a system of infinitely many harmonic oscillator

is regarded as a free theory of multi-particle states, whereas normally a harmonic oscillator

is not regarded as a free theory.

Problem 5.1 : The complex harmonic oscillator

To exhibit the derivation of (5.24) from the Schrödinger picture, consider the theory (5.1)

in one space dimension. For simplicity, assume that the space dimension is compactified to

a circle of length L. Show that the field φ can be expanded in a Fourier series

φ(x, t) =
1√
L

∑
k

φ(k, t) exp(ikx) ,

with k equal to 2π/L times a (positive or negative) integer. Subsequently, write down the

Lagrangian.

Now restrict yourself to two Fourier modes with a fixed value of |k|, so that the infinite

Fourier sum is replaced by a sum over two terms with ±k, where we choose k positive. Define

φk = φ and φ−k = φ†, so that the Lagrangian reads

L = φ̇φ̇† − ω2φφ† . (ω2 = k2 +m2)

For this system of a finite number of degrees of freedom, find the expression for the canon-

ical momenta π and π†, associated with φ and φ†, respectively. Then write the canonical

commutation relations and give the Hamiltonian. Express φ, φ†, π and π† in terms of the

operators

a =
1√
2~ω

(
ωφ+ iπ†

)
, b =

1√
2~ω

(
ωφ† + iπ

)
,
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and their hermitean conjugates. Derive the commutation relations for a, a†, b and b† and

write down the Hamiltonian in terms of these operators. What does this system correspond

to?

Derive the operators a, a†, b and b† in the Heisenberg picture. Reconstruct the field

φ(x, t) by writing the full Fourier sum. Take the limit L→∞ and compare to the first line

in (5.24). Do the same for the canonical momenta. Here we note the Fourier transform in d

space-time dimensions (note the sign in the exponential)

π(~x, t) = (2π)−
d−1
2

∫
dd−1k π(~k, t) e−i

~k·~x.

Problem 5.2 : Taking the continuum limit

Express the Hamiltonian (5.22) in terms of the operators a(~k) and a†(~k). In view of the

above presentation it is convenient to consider the field theory (5.1) in a large but finite

((d− 1)-dimensional) box of volume V and impose periodic boundary conditions. Then we

decompose (cf. 3.23),

φ(~x, t) =
1√
V

∑
~k

φ(~k, t)ei
~k·~x =

∑
~k

√
~

2V k0

{
a(~k) ei

~k·~x−ik0t + a†(~k) e−i
~k·~x+ik0t

}
, (5.35)

π(~x, t) =
1√
V

∑
~k

π(~k, t)e−i
~k·~x =

∑
~k

√
~

2V k0

(−ik0)
{
a(~k) ei

~k·~x−ik0t − a†(~k) e−i
~k·~x+ik0t

}
,

where π(~k, t) ≡ ∂S/∂φ̇(~k, t). Determine the commutator [φ(~k, t), π(~k′, t′)]t=t′ from (5.25) and

check the expression for [a(~k), a†(~k′)]. Give again the Hamiltonian and compare the result

with (5.32) and (5.34). Consider the continuum results by making use of the correspondence

∑
~k

−→ V

(2π)d−1

∫
dd−1k , δ~k,~k′ −→

(2π)d−1

V
δd−1(~k − ~k′) . (5.36)

Problem 5.3 : Prove that the integral measure
∫

d3k [2(~k2 + m2)1/2]−1 is Lorentz invariant.

This can be done in two ways. First perform a Lorentz transformation (see e.g. De Wit &

Smith, appendix A) and express d3k′ [2(~k ′2 + m2)1/2]−1 in terms of the original momenta.

Secondly, rewrite the integral as an integral over four momenta ~k and k0 by including δ(k2 +

m2) θ(k0) in the integrand.

Problem 5.4 : Show that 〈0|φ(~x, t)φ(~x, t)|0〉 is divergent.
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Problem 5.5 : Wave functions versus fields

Give arguments why a field and a wave function are two different concepts, so that (5.2)

should not be regarded as a relativistic generalization of the Schrödinger equation. (This

point is even more pressing for fermions where the relativistic wave equation – the Dirac

equation – is also a first-order differential equation, just as the Schrödinger equation.) For

comparison, consider the single harmonic oscillator and confront the second-order differential

equation for the operator q(t) in the Heisenberg picture with the first-order Schrödinger

equation. Derive the Schrödinger equation in the “coordinate” representation where we

have wave functions Ψ(φ(~k), t) depending on the “coordinates” φ(~k) and the time t. For

convenience, consider again the theory (5.1) in a box with periodic boundary conditions.

Write down the correct expression for the momenta π(~k) in this representation and give the

Hamiltonian. Show that the ground state wave function Ψ0(φ(~k), t), which corresponds to

the vacuum (i.e. the state with zero occupation numbers) of the Fock space, takes the form

(make use of problem 3.1)

Ψ0(φ(~k), t) = exp
{∑

~k

(
−

√
~k2 +m2

2~
φ(~k)φ(−~k)− 1

2
it

√
~k2 +m2 + 1

4
ln
[~k2 +m2

π~2

])}
.

Note the presence of the zero-point energy.

Problem 5.6 : A particle on a circle

Consider a particle of mass m, moving on a circle C of radius R in the (x, y)-plane. The

circle is parametrised by (x, y) = (R cosφ,R sinφ) and 0 ≤ φ < 2π. The particle experiences

a force described by a periodic potential V (φ) = V (φ+2π), so that the classical action reads

S[φ] =

∫
dt
{

1
2
mR2

(dφ
dt

)2

− V (φ)
}
.

i) Show that the Hamiltonian of the particle equals

H(pφ, φ) =
p2
φ

2mR2
+ V (φ) ,

with pφ the momentum conjugate to φ. After quantization pφ and φ are operators

satisfying the commutation relation [φ, pφ] = i~. How does pφ therefore act on the

wave function Ψ(φ, t)? Specify the boundary conditions for Ψ(φ, t) and determine the

eigenvalues of the momentum operator pφ. Finally give the time-dependent Schrödinger

equation for the wave function.

By means of the above Hamiltonian we would like to derive a path integral expression for the

transition function WC(φN , tN ;φ0, t0) ≡ 〈φN |e−iH(tN−t0)/~|φ0〉. We follow the standard proce-

dure and divide the time interval tN − t0 into N pieces of ‘length’ ∆ = (tN − t0)/N , applying
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the completeness relation
∫ 2π

0
dφi |φi〉〈φi| = 1 at any time instant ti (i = 1, 2, . . . , N − 1). In

this way we obtain as a first result

WC(φN , tN ;φ0, t0) =
N−1∏
i=1

∫ 2π

0

dφi

N∏
j=1

〈φj|e−iH∆/~|φj−1〉 . (5.37)

Subsequently we must determine the matrix element 〈φj|e−iH∆/~|φj−1〉. For this purpose we

use the Poisson resummation formula

∞∑
n=−∞

δ(x− n) =
∞∑

`=−∞

e2πi`x . (5.38)

Note that the resummation formula expresses the fact that the phase factors on the right-

hand side only interfere constructively when the phases are equal to a multiple of 2π.

ii) Show with help of (5.38) that, after neglecting O(∆2) corrections,

〈φj|e−iH∆/~|φj−1〉 =
∞∑

`j=−∞

∫ ∞
−∞

dkj−1

2π
ei(φj−φj−1+2π`j)kj−1 e−i∆H(~kj−1,φj−1)/~ .

Now we also introduce the transition function W (φN , tN ;φ0, t0) for a particle of ‘mass’ mR2

that moves subject to the same periodic potential V (φ) along the full φ-axis. (This means

that now −∞ < φ <∞.)

iii) Prove, by substitution of the previous result in (5.37) and by using the path integral

expression for W (φN , tN ;φ0, t0),

WC(φN , tN ;φ0, t0) =
∞∑

`N=−∞

W (φN + 2π`N , tN ;φ0, t0) .

Can you physically explain this formula? (Note: `N is known as the winding number.)

Finally consider the special case of a free particle (V (φ) = 0). Then

W (φN , tN ;φ0, t0) =

√
mR2

2πi~(tN − t0)
exp

{
imR2

2~
(φN − φ0)

2

tN − t0

}
.

Because the transition function WC is periodic in φN −φ0, we can expand WC in the Fourier

series

WC(φN , tN ;φ0, t0) =
∞∑

n=−∞

Cn(tN − t0)
ein(φN−φ0)

2π
.
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iv) Determine the coefficients Cn(tN − t0) by means of a Fourier transform of the result of

part iii) and determine with the help of this the eigenvalues of the Hamiltonian. Here,

make use of (2.20).

Problem 5.7 : Electromagnetic fields

Consider the Lagrange density for the free photon field Aµ(~x, t),

L = −1
4
(Fµν)

2 = −1
4
(∂µAν − ∂νAµ)

2 . (5.39)

i) Determine, by considering the variation of the action under Aµ → Aµ + δAµ, the

classical equations of motion for Aµ in their Lorentz covariant form, ∂µ(∂µAν−∂νAµ) =

0. Write them in terms of the electric field ~E = ∇A0 − ∂ ~A/∂t and the magnetic field
~B = ∇× ~A.

Suggestion: you may want to use the vector identity ~A×( ~B× ~C) = ( ~A· ~C) ~B−( ~A· ~B)~C.

What kind of (space- and time-dependent) gauge symmetry do the Lagrange density

and the equations of motion for Aµ possess?

We want to quantize the above theory. This requires that we first choose a (so-called) gauge

condition (as we will discuss later in these lectures). In what follows we choose the so-called

temporal gauge, defined by the condition A0 = 0.

ii) Give the Lagrange density in this gauge and determine again the classical equations

of motion. Note that, in comparison with part i), one equation is missing. We return

to this shortly.

iii) The Lagrange density in the temporal gauge still contains a residual gauge symmetry.

Give this symmetry or derive it from the original symmetry of the original Lagrange

density. In addition, write the transformations for ~A(~k, t), the Fourier transform of
~A(~x, t).

iv) Determine the canonically conjugate momentum ~π corresponding to ~A and express it

in terms of ~E. Give the Hamiltonian in terms of ~E and ~B.

Suggestion: the following identity may be convenient, (~∇× ~A) · (~∇× ~A) = ∂iAj ∂iAj−
∂iAj ∂jAi.

v) What are the commutation relations of the ’momenta’ ~π(~k) and the ’coordinates’ ~A(~k)?

What are, in the coordinate representation, the momentum operators and the Hamil-

tonian. Formulate the time-dependent Schrödinger equation for the wave functional

Ψ[ ~A(~k), t]. Assume that the quantization is performed in a finite box of volume V , so

that the ~k assume discrete values.
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In question ii), we had found that, at the classical level in the temporal gauge, the equation

∇· ~E = 0 is missing. In order to perform the quantization of the Maxwell theory in a correct

way, we must therefore explicitly include this equation. We do this by imposing it as a

‘constraint’ on the wave functional.

vi) Give the above ‘constraint’ on the wave functional in the coordinate representation. In

iii) we determined how ~A(~k) transforms under gauge transformations corresponding to

the temporal gauge. Use this to show that the ‘constraint’ guarantees that Ψ[ ~A(~k), t]

is invariant under an infinitesimal gauge transformation.

We will now try to determine the wave functional for the ground state by solving the time-

independent Schrödinger equation.

vii) Derive in the usual manner, i.e. from the time-dependent Schrödinger equation, the

time-independent Schrödinger equation for a wave functional Ψ[ ~A(~k)].

In view of our experience with harmonic oscillators we expect that the wave functional

Ψ0[ ~A(~k)] belonging to the ground state will be a Gaussian functional. Therefore we write

Ψ0[ ~A(~k)] = C0 exp

∑
~k

Ai(−~k)Gij(~k)Aj(~k)

 . (5.40)

viii) Determine first from the ‘constraint’ of vii) the form of Gij(~k).

Suggestion: indicate first which tensorial structure you expect for Gij.

ix) Subsequently, solve the time-independent Schrödinger equation. In other words, de-

termine the ground-state wave functional (you may ignore its normalization) and the

(infinite) ground-state energy. Could you have written down the answer for the latter

directly? If so, explain your answer.

Problem 5.8 : Winding and momentum states

Consider a field theory in a one-dimensional space corresponding to a circle with circumfer-

ence L, described by a real scalar field φ(x, t) with action

S[φ] =

∫
dt

∫ L

0

dx
[

1
2
(∂tφ)2 − 1

2
(∂xφ)2

]
. (5.41)

i) Argue that the field φ can be expanded as

φ(x, t) =
1√
L

∑
k

φk(t) e2πikx/L , (5.42)

where k is an integer. Is φk real?
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ii) Write the action in terms of the φk. As expected we are then dealing with an (in-

finite) sum of known quantum-mechanical systems. In this sum we distinguish two

contributions, i.e. i.e., S = S0 + Sosc, where S0 =
∫

dt 1
2
(∂tφ0)

2 and Sosc comprises

the contribution of the oscillations described by the φk with k 6= 0. Determine the

conjugate momentum πk of φk and give the canonical commutation relations.

iii) Determine the spectrum of the conjugate momenta πk (in other words, their possible

eigenvalues). Clarify your answer on the basis of your knowledge of the quantum-

mechanical system described by φk. In particular, pay attention to the momentum π0

conjugate to φ0.

iv) Give the Hamiltonian. Give also the corresponding expression in the ‘coordinate’

representation.

v) Consider now the case that the field φ itself characterizes the position on a circle with

radius R, so that we identify φ with φ + 2πR. Argue that the decomposition of φ

should now be changed into

φ(x, t) =
2πmR

L
x+

1√
L

∞∑
k=−∞

φk(t) e
2πikx/L . (5.43)

What are the possible values for the number m? What is their significance? Try to

clarify your answer with a figure. Check that ∂xφ is continuous over the circle and that

the Hamiltonian remains the same up to a constant.

vi) Give the action again and distinguish as before between the two terms S0 and Sosc.

Give the expressions of the conjugate momenta πk of φk and write down the canonical

commutation relations.

vii) From the periodicity of φ, derive a condition for φ0. What is now the spectrum of the

momenta? Pay again special attention to the conjugate momentum π0.

viii) Give the Hamiltonian and the ground-state energy. Let us concentrate on the con-

tributions of the Hamiltonian that are not caused by the oscillations described by φk

with k 6= 0. Determine the eigenvalues of this (nontrivial) part of the Hamiltonian,

E0(m,n) =
1

2L

[~2n2

R2
+ (2πR)2m2

]
. (5.44)

Describe what happens to these eigenvalues when we change R into ~/2πR. In the

context of string theory this phenomenon is known as T-duality.
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Problem 5.9 : Maxwell theory in 1 + 1 space-time dimensions

Consider the action of Maxwell theory in two spacetime dimensions,

S[A] =

∫
dx dt

(
1
2
Ftx

2 + θ Ftx + JµAµ

)
. (5.45)

Here Ftx is the field strength defined by Ftx = ∂tAx − ∂xAt, where the two-vector Aµ =

(At, Ax) comprised the potentials, and Jµ = (J t, Jx) is some external current. Note that, in

two space-time dimensions, there exists no magnetic field whereas the electric field equals

E = −Ftx. The term proportional to the constant θ has no analogue in higher dimensions

(at least, not in a Lorentz invariant setting).

i) Prove that the electric field is invariant under gauge transformations of the form δAµ =

∂µΛ(t, x). Derive the field equations for Aµ and write them as first-order equations for

E. Show that the current Jµ must be conserved. In the absence of the current, give

the solutions for E.

ii) Use the gauge transformations to set At(t, x) = 0. Give the gauge parameter Λ(t, x)

that is required for this, expressed as an integral over At. Write down the resulting

Lagrangian in the At = 0 gauge, which depends only on Ax. Observe that we still have

a residual invariance under gauge transformations with functions Λ(x) that depend

only on x and no longer on t.

iii) Write down the field equations in this gauge and note that there is one field equation

less in this case. For the moment ignore this equation which will have to be imposed

eventually as the so-called Gauss constraint. Write down the canonical momentum

π(t, x) associated to Ax(t, x) and show how it is related to E(t, x).

iv) Write down the canonical commutation relations for Ax(x) and π(y) (in the Schrödinger

picture, so that we suppress the time dependence).

v) Write down the Hamiltonian and define the wave function in the ‘coordinate’ repre-

sentation. Here and henceforth we suppress the external current Jµ. Give the form of

the momentum in this representation. What is the lowest-energy state?

vi) Let us now return to the Gauss constraint. Show that, for arbitrary functions Λ(x),

Q[Λ(x)] =
∫

dx Λ(x) ∂xπ(x) vanishes classically but not as an operator.

vii) Consider Q[Λ] as an operator and calculate the commutator [Q,Ax(y)]. Interpret the

result. Argue now that physical wave functions should be annihilated by the operator

Q. What are the physically relevant wavefunctions?
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6 Correlation functions

In principle, one would like to calculate the same kind of quantities in quantum field theory

that one considers in the context of more conventional quantum mechanics. Hence one

is interested in the determination of energy levels, scattering amplitudes and the like. In

general, however, the calculations of these quantities are cumbersome in field theory and

one often has to rely on perturbation theory. Intermediate results of the theory are often

expressed in terms of so-called correlation functions. These functions may carry different

names depending again on the context and play an important role. They are the topic of

this chapter.

As a first attempt to define correlation functions, let us consider

t2〈q2| q(t) q(t′) · · · |q1〉t1 for t2 > t > t′ > · · · > t1, (6.1)

where |qi〉ti is the eigenstate of the position operator at t = ti. Both states and operators

are taken in the Heisenberg picture. To facilitate the notation, let us introduce a so-called

time-ordered product,

T (q(t) q(t′) · · ·) ≡ q(t) q(t′) · · · , if t > t′ > · · · , etc. (6.2)

The correlation function G(t, t′, . . .) may then be defined by

G(t, t′, . . .) ≡ t2〈q2|T (q(t) q(t′) . . .)|q1〉t1
t2〈q2|q1〉t1

+ · · · . (6.3)

When the time-ordered product contains n operators q at independent times, G(t, t′, . . .) is

called the n-point correlation function. Of course, there is always the possibility of modifiying

a correlation function by products of lower-n correlation functions. Such modifications are

indicated by the dots in (6.3). Later on we intend to make a specific choice for these

modifications, but for the moment we leave them unspecified.

Using the completeness of the states |q〉t for fixed value of t, we can rewrite (6.3) as

G(t, t′, . . .) =

∫
dq
∫
dq′ · · · t2〈q2|q〉t q t〈q|q′〉t′ q′ t′〈q′| · · · |q1〉t1

t2〈q2|q1〉t1

=

∫
Dq q(t) q(t′) · · · e i

~S[q(t)]∫
Dq e i

~S[q(t)]
, (6.4)

where both path integrals are defined with boundary conditions

q(t1) = q1, q(t2) = q2. (6.5)
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Correlation functions are not restricted to products of the q(t), but can also contain so-

called composite operators, ”functions” of the operators q(t) taken at the same instant of

time. However, in field theory the definition of such operators requires special care, because

products of fields become singular when taken at the same space-time point. We return to

this aspect in due course.

As an example let us consider the correlation functions for the harmonic oscillator, first

in the operator formalism and then by means of path integral techniques.

6.1 Harmonic oscillator correlation functions; operators

We consider the two-point correlation function defined above in the context of the operator

formalism. Here it is customary to adopt different boundary conditions. Rather than the

states |q1〉t1 and |q2〉t2 , we will choose the (Heisenberg) groundstates |0〉t1 and |0〉t2 . Because

the groundstate energy of the harmonic oscillator is equal to 1
2
~ω, we have

|0〉t1,2 = e
iωt1,2

2 |0〉, (6.6)

and therefore

t2〈0|0〉t1 = e−
iω
2

(t2−t1). (6.7)

Let us now determine the matrix element t2〈0|q(t) q(t′)|0〉t1 for t2 > t > t′ > t1. Using the

completeness of the energy eigenstates |n〉t0 with t > t0 > t′, we can write

t2〈0|q(t) q(t′)|0〉t1 =
∑
n

t2〈0|q(t)|n〉t0 t0〈n|q(t′)|0〉t1 . (6.8)

Using (??) we compute

t0〈n|q(t′)|0〉t1 =

√
~

2mω
e

1
2
iω(t1−3t0+2t′) δn−1,0. (6.9)

In this way we find

t2〈0|q(t) q(t′)|0〉t1 =
~

2mω
exp

[
1
2
iω(t1 − 3t0 + 2t′ − t2 + 3t0 − 2t)

]
=

~
2mω

exp
[
−1

2
iω(t2 − t1)

]
exp [−iω(t− t′)] . (6.10)

Therefore the two-point correlation function equals

G(t, t′) =
~

2mω

{
θ(t− t′) e−iω(t−t′) + θ(t′ − t) eiω(t−t′)

}
=

~
2mω

{cosω(t− t′)− i sinω(t− t′)[θ(t− t′)− θ(t′ − t)]} (6.11)
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where θ(t) is the step function defined by

θ(t) =

 1 for t > 0

0 for t < 0
(6.12)

We note the presence of the second term in the second line of (6.11) which exhibits a cusp

singularity. Due to that the derivative of G(t, t′) is not continuous.

Observe that we could have modified the correlation function by adding a term propor-

tional to the product of two ”one-point” correlation functions, containing a single operator

q(t) or q(t′). However, these terms vanish because of (6.9), so that this aspect may be ig-

nored here. Furthermore we should point out that we have implicitly assumed that t1 and

t2 are moved to −∞ and +∞, because we have not introduced additional step functions to

restrict t and t′ to the interval (t1, t2).

Now we use the following representation for the θ function,

θ(t) = lim
ε↓0

−1

2πi

∫ ∞
−∞

dq
e−iqt

q + iε
, (6.13)

which can be proven by contour integration.2 Substituting (6.13) into (6.11), we find3

G(t, t′) =
−~

2mω

1

2πi

∫ ∞
−∞

dq
1

q + iε

{
e−i(ω+q)(t−t′) + e+i(ω+q)(t−t′)

}
=

−~
2mω

1

2πi

∫ ∞
−∞

dq e−iq(t−t
′)

(
1

q − ω + iε
+

1

−q − ω + iε

)
=

~
m

1

2πi

∫ ∞
−∞

dq
e−iq(t−t

′)

−q2 + ω2 − iε
. (6.14)

Obviously G(t, t′) depends only on t− t′ and satisfies the equation

(−∂2
t − ω2)G(t, t′) =

i~
m
δ(t− t′). (6.15)

To show the latter one uses the Dirac delta function δ(t) = 1
2π

∫
dq eiqt. Of course, the above

equation can also be verified directly for the expression (6.11).

To calculate the real and imaginary part of G, we can use the identity

lim
ε↓0

∫
dq

f(q)

q − ω ± iε
= P

∫
dq

f(q)

q − ω
∓ iπf(ω), (6.16)

2The integrand has a pole in the lower half plane. If t > 0 then it is possible to close the contour
in the lower half plane. The pole is then inside the contour, so the Cauchy integral formula, f(z) =
1

2πi

∮
dw f(w)(w − z)−1 yields θ(t) = 1. For t < 0 the contour can be closed in the upper half plane. Now

the pole is outside the contour, so we find θ(t) = 0.
3Note that we shift the integration variable of an integral which is not manifestly convergent. The

discussion of such subtleties is postponed until later. In the present case there is no difficulty.
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where P
∫
dq ≡ limδ↓0

(∫ ω−δ
−∞ +

∫∞
ω+δ

)
dq is the principal value integral. Substituting (6.16) in

(6.14) we easily find

ReG(t, t′) =
~

2mω
cosω(t− t′), (6.17)

and

ImG(t, t′) =
~

2mπ
P

∫
dq
e−iq(t−t

′)

q2 − ω2
. (6.18)

Note that (6.17) represents a solution of the homogeneous equation associated with (6.15).

6.2 Harmonic oscillator correlation functions; path integrals

Next we will consider the correlation functions in the context of the path integral. Although

this will turn out to be quite a laborious exercise, we will do this rather explicitly to demon-

strate a number of techniques which are standard in the evaluation of functional integrals.

We start by introducing

WJ(q2, t2; q1, t1) =

∫
Dq e

i
~S[q(t)]+

R t2
t1
dt J(t)q(t), (6.19)

where J(t) is some external source. Just as above we are interested in different boundary

conditions, so we define

W
(0)
J (t2, t1) =

∫
dq1 dq2 ϕ

∗
0(q2)WJ(q2, t2; q1, t1)ϕ0(q1) , (6.20)

with ϕ0(q) = t〈q|0〉t the groundstate wave function (which is time-independent). Now we

consider

G(t, t′) ≡ δ

δJ(t)

δ

δJ(t′)
lnW

(0)
J

∣∣∣
J=0

=

∫
Dq q(t) q(t′) e i

~S∫
Dq e i

~S
−

(∫
Dq q(t) e i

~S∫
Dq e i

~S

)(∫
Dq q(t′) e i

~S∫
Dq e i

~S

)
, (6.21)

where the integration over q1,2 according to (6.20) has been implied in every path integral.

Observe that the overall normalization of the path integral cancels in this definition. This

is one of the reason why in practice one does not worry so much about these (ill-defined)

factors. The definition of two-point correlation function shows the modification by products

of lower correlation functions that we alluded to in the text below (6.3) and (6.12). In the

two-point function these terms vanish, at least for the harmonic oscillator, but in the general

case there are important reasons for including these terms. The above definition can easily
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be generalized to n-point correlation functions,4

G(t, t′, t′′, . . .) =
δ

δJ(t)

δ

δJ(t′)

δ

δJ(t′′)
· · · lnW (0)

J

∣∣∣
J=0

. (6.22)

Again this definition leads to modifications by products of lower-n correlation functions.

With this particular definition one can show from the results that we are about to present,

that all n > 2 correlation functions for the harmonic oscillator (or, more generally, for any

action quadratic in q) vanish (cf. problem 6.1).

We now apply the above formulae to the harmonic oscillator. Subsequently we will

compare the result with (6.14). First we evaluate the path integral (6.19) in the semiclassical

approximation (which is exact for an action quadratic in q). We therefore expand q(t) about

a classical solution q0(t) with q0(t1) = q1 and q0(t2) = q2 as an infinite sum,

q(t) = q0(t) +
∞∑
n=1

qn sin
nπ(t− t1)

t2 − t1
, (6.23)

which gives rise to the following expression for the action,

S[q(t)] = S[q0] +
∞∑
n=1

1
4
mq2

n

{
n2π2

(t2 − t1)2
− ω2

}
(t2 − t1). (6.24)

Note that terms linear in q0 do not appear since those vanish due to the equations of motion

(i.e., q0(t) is a stationary “point” for the action S[q(t)]). Then

WJ = exp

{
i

~
S[q0] +

∫
dt J(t)q0(t)

}
(6.25)

×
∫
Dq exp

{
i

~
m

4
(t2 − t1)

∞∑
n=1

q 2
n

[
n2π2

(t2 − t1)2
− ω2

]
+
∞∑
n=1

qn

∫
dt J(t) sin

nπ(t− t1)

t2 − t1

}

Observe that only the first factor depends on the boundary values q1,2. Now we redefine the

integration variables qn in the path integral by a shift proportional to J such as to eliminate

the term linear in qn. This leads to

WJ = exp

{
i

~
S[q0] +

∫
dt J(t) q0(t) + 1

2

∫
dt dt′ J(t)G0(t, t

′) J(t′)

}
×
∫
Dq exp

{
i

~
m

4
(t2 − t1)

∞∑
n=1

q 2
n

[
n2π2

(t2 − t1)2
− ω2

]}
, (6.26)

4These correlation functions are called the connected correlation functions for reasons that we do not yet
explain. In later chapters we often denote these correlation functions by 〈q(t) q(t′) q(t′′) · · ·〉.
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where

G0(t, t
′) = −~

i

2

m(t2 − t1)

∞∑
n=1

sin nπ(t−t1)
t2−t1 sin nπ(t′−t1)

t2−t1
n2π2

(t2−t1)2
− ω2

, (6.27)

which is periodic in t and t′ separately with periodicity 2(t2 − t1). Note that(
− ∂2

∂t2
− ω2

)
G0(t, t

′) =
i~
m
δ(t− t′), (6.28)

where δ(t − t′) is the δ-function for functions on the (t1, t2) interval that vanish at the

boundary. Outside this interval, the result follows from periodicity.

There are now three expressions that we have to evaluate. First of all we should simplify

the expression for (6.27), then we should calculate the Gaussian integral over the qn, and

finally we should determine the integrals over q1 and q2 to convert to the same states as in

the operator formalism (cf.

6.2.1 Evaluating G0

It is possible to further evaluate G0. First we write

G0(t, t
′) =

i~
mT

∞∑
n=1

[
cos

nπ(t− t′)

T
− cos

nπ(t+ t′ − 2t1)

T

] [n2π2

T 2
− ω2

]−1

, (6.29)

where T = t2 − t1. Now we make use of the following formula,

1

T

∞∑
n=1

cos nπ(τ+T )
T

n2π2

T 2 − ω2
=

1

2ω2 T
− cosω τ

2ω sinω T
. (6.30)

This result follows from Fourier decomposing cosω τ in the interval −T < τ < T in terms

of functions cos(nπτ/T ). Note that, while the left-hand side is periodic under τ → τ + 2T ,

the right-hand side is not. By exploiting the periodicity of the left-hand side, τ must first

be selected such that it is contained in the interval (−T, T ).

Now apply the above formula to (6.29), with in the first term τ = t − t′ − T when

t1 < t′ < t < t2, or τ = t − t′ + T when t1 < t < t′ < t2, and in the second term

τ = t+ t′ − t1 − t2 where t1 < t, t′ < t2. This leads to

G0(t, t
′) =

i~
2mω

{
− θ(t− t′) sinω(t− t′)− θ(t′ − t) sinω(t′ − t) (6.31)

− cosω(t− t′) cotω T +
cosω(t+ t′ − t1 − t2)

sinω T

}
, (t1 < t, t′ < t2)

where the first term in (6.29) corresponds to the first three terms in the formula above. As

one easily verifies, this result satisfies again the differential equation (6.15), just as the result
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(6.11) obtained by means of the operator formalism. We expect to derive the same result

(6.11) by means of path integrals. It therefore follows that the remaining terms that we are

about to evaluate, must be a solution of the homogeneous equation corresponding to (6.15).

As we shall see, this is indeed the case.

6.2.2 The integral over qn

Let us now discuss the second line in (6.26), which is a path integral independent of the

boundary values q1,2. There are two ways to evaluate this integral. The easiest one is to

observe that this integral is precisely the path integral for the harmonic oscillator, evaluated

in chapter 2, with boundary condition q1 = q2 = 0. Using (3.29) it thus follows that∫
Dq exp

{
i

~
m

4
(t2 − t1)

∞∑
n=1

q 2
n

[
n2π2

(t2 − t1)2
− ω2

]}
=

√
mω

2πi~ sinω(t2 − t1)
. (6.32)

In a more explicit evaluation one computes the Gaussian integrals. First we write the path

integral measure as ∫
Dq −→

∞∏
n=1

∫ ∞
−∞

dqn. (6.33)

Integration over the qn yields∫
Dq exp

{
i

~
m

4
(t2 − t1)

∞∑
n=1

q 2
n

[
n2π2

(t2 − t1)2
− ω2

]}

=

{
∞∏
n=1

(
4i~(t2 − t1)

mπ n2

)} 1
2
{
∞∏
n=1

(
1− ω2(t2 − t1)

2

π2 n2

)}− 1
2

. (6.34)

This yields a result proportional to (6.32).5 The ill-defined proportionality factor is indepen-

dent of ω and should be absorbed into the definition of the path integral; this is in accord

with the prescription based on the Wiener measure discussed in chapter 2. Combining (6.26)

and (6.32), we find

WJ(q2, t2; q1, t1) =

√
mω

2πi~ sinω(t2 − t1)
(6.36)

× exp

{
i

~
S[q0] +

∫
dt J(t)q0(t) + 1

2

∫
dt dt′ J(t)G0(t, t

′) J(t′)

}
.

5Note the formula
sinx

x
=

∞∏
n=1

(
1− x2

π2 n2

)
, (6.35)

which can be derived from (6.30) by first putting τ = −T and multiplying by 2ω; subsequently one integrates
over ω and fixes the integration constant by comparing for x = 0.
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6.2.3 The integrals over q1 and q2

Now we are ready to calculate the two-point correlation function of the groundstate in the

path integral formalism. We recall that the classical solution for the harmonic oscillator

reads

q0(t) =
1

sinω(t2 − t1)

{
q2 sinω(t− t1)− q1 sinω(t− t2)

}
, (6.37)

which leads to the action

S[q0(t)] =
mω

2 sinω(t2 − t1)

{(
q2
1 + q2

2)
)
cosω(t2 − t1)− 2q1q2

}
. (6.38)

Furthermore, the groundstate wave function takes the form

ϕ0(q) =
(mω
π~

)1/4

exp
{
−mω

2~
q2
}
. (6.39)

Hence W
(0)
J (t2, t1) is given by

W
(0)
J =

√
mω

2πi~ sinω(t2 − t1)

√
mω

π~
exp

{
1
2

∫
dt dt′ J(t)G0(t, t

′) J(t′)

}
×
∫
dq1 dq2 exp

{mω
2~

[
−q2

1 − q2
2 +

i

sinω(t2 − t1)

[
(q2

1 + q2
2) cosω(t2 − t1)− 2q1q2

]
+

2~
mω sinω(t2 − t1)

(J1q1 + J2q2)
]}
, (6.40)

where

J1 = −
∫ t2

t1

dt J(t) sinω(t− t2),

J2 =

∫ t2

t1

dt J(t) sinω(t− t1). (6.41)

The integral can be written as∫
dq1 dq2 exp

{mω
~

[
− 1

2

∑
i,j=1,2

qiAij qj +
~

mω sinω(t2 − t1)

∑
i=1,2

Ji qi

]}
, (6.42)

where the matrix A equals

A =
−i

sinω(t2 − t1)

 eiω(t2−t1) −1

−1 eiω(t2−t1)

 . (6.43)

This integral can be evaluated explicitly and we find(mω
2~

)−1
√

π2

detA
exp

{ ~
2mω sin2 ω(t2 − t1)

∑
i,j=1,2

Ji
(
A−1

)
ij
Jj

}
. (6.44)
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Combining this with (6.40) and using

detA = −2i
exp iω(t2 − t1)

sinω(t2 − t1)
, A−1 = 1

2

(
1 e−iω(t2−t1)

e−iω(t2−t1) 1

)
yields

W
(0)
J (t2, t1) = e−

iω
2

(t2−t1) exp
{ ~

2mω sin2 ω(t2 − t1)

∫
dt dt′ J(t) f(t, t′) J(t′)

}
× exp

{
1
2

∫
dt dt′ J(t)G0(t, t

′) J(t′)
}
, (6.45)

where

f(t, t′) = 1
2

{
sinω(t− t1) sinω(t′ − t1) + sinω(t− t2) sinω(t′ − t2)

}
−1

2
e−iω(t2−t1)

{
sinω(t− t2) sinω(t′ − t1) + sinω(t− t1) sinω(t′ − t2)

}
= 1

2
i sinω(t2 − t1)

{
e−iω(t2−t1) cosω(t− t′)− cosω(t+ t′ − t1 − t2)

}
. (6.46)

This function satisfies the homogeneous version of the differential equation (6.15), as was

claimed earlier.

6.3 Conclusion

Observe that the logarithm of (6.45) depends quadratically on J , so that only the two-point

correlation function is nonvanishing, a result that we have alluded to below (6.22). The

two-point correlation function is now given by

G(t, t′) = G0(t, t
′) +

~
mω sin2 ω(t2 − t1)

f(t, t′). (6.47)

Substituting (6.31) and (6.46) one reproduces the original result (6.11) obtained in the

operator method. This is the desired result. To obtain the correct result we had to pay

attention to the correct boundary conditions, which are linked to the choice of the matrix

elements used in the definition of the correlation functions. The crucial contribution to

the correlation function is represented by G0, which is itself independent of the choice of

the matrix element and satifies the inhomogenous differential equation (6.15). In practical

calculations the question of boundary conditions is often not explicitly addressed.

Problem 6.1 :

Evaluate the discretized path integral

WJ =

∫ ∏
i

dqi exp
{
− 1

2

∑
i,j

qiAij qj +
∑
i

Ji qi

}
.
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Define the (connected) correlation functions according to (6.22) and show that only the

two-point function is nonvanishing and proportional to the inverse of the matrix Aij. Argue

from this that the two-point function for the harmonic oscillator must satisfy the differential

equation (6.15).

Problem 6.2 : Time ordering and commutation relations

Evaluate, using the procedure described in the first part of this chapter, the correlation func-

tions 〈q(t) p(t′)〉 and 〈p(t) p(t′)〉 for the harmonic oscillator. Using p = m q̇, which is valid

in the Heisenberg picture, we may write the result as m〈q(t) q̇(t′)〉 and m〈q̇(t) p(t′)〉, respec-

tively. Assume that the time derivative can be written outside the correlation functions and

compare the results. Argue why they coincide for the first and not for the second correlation

function. Now consider the correlation functions involving q and q̇ by including a second

source in the path integral that couples to q̇. Argue that in this case time derivatives can be

taken outside the correlation functions. How would you evaluate correlation functions of q

and p operators using path integrals. Can you see how the discrepancy between correlation

functions of q and/or p and correlation functions of q and/or m q̇ arises in this context? (In

the path-integral derivation, ignore possible subtleties with the boundeary conditions.)

Problem 6.3 : In equation (6.21) we have shown explicitly that the two-point correlation

function equals

〈q(t)q(t′)〉 =
δ

δJ(t)

δ

δJ(t′)
lnW

(0)
J

∣∣∣
J=0

(6.48)

= 〈0|T (q(t) q(t′))|0〉 − 〈0|q(t)|0〉 〈0|q(t′)|0〉,

where |0〉 denotes the normalized groundstate of the system. Show in a similar manner, thus

by functional differentiation, that the four-point correlation function obeys

〈q(t) q(t′) q(t′′) q(t′′′)〉 =
δ

δJ(t)

δ

δJ(t′)

δ

δJ(t′′)

δ

δJ(t′′′)
lnW

(0)
J

∣∣∣
J=0

= 〈0|T (q(t) q(t′) q(t′′) q(t′′′))|0〉
−〈0|T (q(t) q(t′))|0〉 〈0|T (q(t′′) q(t′′′))|0〉
−〈0|T (q(t) q(t′′))|0〉 〈0|T (q(t′) q(t′′′))|0〉
−〈0|T (q(t) q(t′′′))|0〉 〈0|T (q(t′) q(t′′))|0〉,

if we assume that the potential V (q) is an even function in q, so that expectation values of

an odd number of q operators, such as 〈0|q(t)|0〉 and 〈0|T (q(t) q(t′) q(t′′))|0〉, vanish.
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Problem 6.4 : For the harmonic oscillator we have found that

W
(0)
J = exp

{
1
2

∫
dt

∫
dt′J(t)G(t, t′) J(t′)

}
, (6.49)

with the two-point correlation function 〈q(t) q(t′)〉 ≡ G(t, t′) given by equation (6.11). Using

the results of problems 6.1 and 6.3, show that in this case 〈0|T (q(t) q(t′))|0〉 = G(t, t′) and

that

〈0|T (q(t) q(t′) q(t′′) q(t′′′))|0〉 = G(t, t′)G(t′′, t′′′)+G(t, t′′)G(t′, t′′′)+G(t, t′′′)G(t′, t′′). (6.50)

Argue generally why there is no ambiguity in the value of G(t, t′) at equal times t = t′. Is

the same true for 〈0|T (q(t) p(t′))|0〉? (cf. problem 6.2).

Problem 6.5 : Anharmonic oscillator

Consider now an anharmonic oscillator with Hamiltonian

H =
p2

2m
+

1

2
mω2q2 +

1

2`2
mω2q4, (6.51)

where the last term is a small perturbation. Prove that in lowest-order perturbation theory

the groundstate energy of the anharmonic oscillator equals

E0 '
~ω
2

+
mω2

2`2
〈0|T (q(t) q(t) q(t) q(t))|0〉 =

~ω
2

(
1 +

3

4

~
mω`2

)
. (6.52)

7 Euclidean Theory

In the previous chapters we have discussed path integrals in quantum mechanics and quantum

field theory and we encountered Gaussian integrals such as,∫
Dq exp

{
i

~

∫
dt
[

1
2
mq̇2 − 1

2
mω2q2

]}
, (7.1)∫

Dφ exp

{
i

~

∫
ddx

[
−1

2
(∂µφ)2 − 1

2
m2φ2

]}
. (7.2)

The exponential functions in the integrand have purely imaginary exponents, so that the

integrals are ill-defined. One way to deal with this problem is to add a small negative

imaginary term to ω2 or m2, so that the integrals converge6. At the end one puts the

imaginary part to zero. This is in line with the iε modification in the correlation functions

6We recall that Gaussian integrals
∫∞
−∞ dx exp(−a x2) can also be defined for complex a provided that

Re a > 0.
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(cf. 4.14). Another way (which is not unrelated) is to perform an analytic continuation

of the time variable t to imaginary time. Therefore we define the so-called Euclidean time

variable τ by

τ ≡ i t. (7.3)

The term Euclidean is derived from the fact that the Lorentz-invariant length ~x2 − t2 is

replaced by the Euclidean length ~x2 + τ 2. The correlation functions in Minkowski space

are then defined by analytic continuation from the corresponding functions evaluated in

Euclidean space. To see how such an analytic continuation must be performed, consider the

two-point correlation function

〈q(t) q(0)〉 =
i~

2πm

∫ ∞
−∞

dk0
e−ik0t

k2
0 − ω2 + iε

. (7.4)

Now the iε term prescribes how one should deal with the poles on the integration countour.

This is related to the time direction (and thus to causality), because the iε modification was

induced by the time ordering of the operators in the correlation functions (see the discussion

in the previous chapter). Often one has to deal with (momentum) integrals that contain the

correlation functions and one can then avoid the poles by rotating the integration contour

away from the real axis. Such a rotation is called a Wick rotation. It rotates the integration

contour along the real axis to an integration along the imaginary k0-axis by closing these

contours in the upper-right and lower-left quadrants and using Cauchy’s theorem. Obviously

one can only rotate such that one avoids the poles at k0 = ±(ω−iε), as these would give rise to

extra contributions. Therefore the iε-modification prescribes how the analytic continuation

should be done. Obviously this continuation is thus defined for integrands whose behavrious

is such that the contribution of the arcs vanishes.

Let us consider the Wick rotation in some detail and establish some of the rules. (The

reader may also consult De Wit & Smith section 8.2.) The integration contour integrals

such as (7.4) is thus rotated counter-clockwise over π/2, so that k0 is purely imaginary and

related to the real ”Euclidean” variable by k0 = ikE. The Wick rotation then leads to7∫ ∞
−∞

dk0 −→
∫ i∞

−i∞
dk0 = i

∫ ∞
−∞

dkE. (7.5)

Consistency requires that delta functions change according to

δ(k0) −→ −i δ(kE). (7.6)

7For indefinite integrals the integration variable kE can always be changed into −kE , so that the sign in
the relation between k0 and kE is not very important. However, for a finite integration range the sign is
important as it will define the boundary values of the integration contour after the Wick rotation.
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Hence the analytic continuation of (7.4) leads to

〈q(−iτ) q(0)〉 =
~

2πm

∫ ∞
−∞

dkE
e−ikEτ

k2
E + ω2

. (7.7)

From the Dirac representation of the delta function, one deduces from (7.6) that the Wick

rotation for the time variable should be taken in the opposite direction (so that tk0 = τkE).

A clockwise rotation leads to (7.3), so that∫ t2

t1

dt −→ −i
∫ τ2

τ1

dτ,

δ(t) −→ i δ(τ). (7.8)

With these rules the exponents in (7.1) and (7.2) change according to

i

~
S[q] −→ 1

~

∫
dτ
{
−1

2
m(dq/dτ)2 − 1

2
mω2q2

}
≡ −1

~
SE[q], (7.9)

i

~
S[φ] −→ 1

~

∫
ddxE

{
−1

2
(∂τφ)2 − 1

2
(∇φ)2 − 1

2
m2φ2

}
≡ −1

~
SE[φ]. (7.10)

The Euclidean action SE is thus real and positive, so that the Gaussian integration is well

defined. It is customary to define also a Euclidean Lagrangian (density) from the action by

means of the relation

SE[q(τ)] ≡
∫
dτLE(q(τ), q̇(τ)) with q̇ =

dq

dτ
. (7.11)

Just as in chapter 2 we can derive a path-integral representation for the transition func-

tion,

WE(q2, τ2; q1, τ1) = 〈q2|e−
1
~H(τ2−τ1)|q1〉 =

∫
q(τ1)=q1
q(τ2)=q2

Dq(τ) e−
1
~S

E [q(τ)] . (7.12)

The usefulness of this expression, which is a path integral over a real exponential factor and

not over a phase factor, will become clear in due course.

Let us now briefly consider the expressions for the Euclidean path integral for the free

particle and the harmonic oscillator. For the free particle (cf. problem 3.1) we have LE =
1
2
mq̇2. One easily finds

SEcl =
m

2(τ2 − τ1)
(q2 − q1)

2 , (7.13)

and

WE(q2, τ2; q1, τ1) =

√
m

2π~(τ2 − τ1)
exp

{
−m(q2 − q1)

2

2~(τ2 − τ1)

}
, (7.14)

which is clearly the analytic continuation of the result found in problem 3.1.
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For the harmonic oscillator (cf. problem 3.3) we have LE = 1
2
mq̇2 + 1

2
mω2q2. The

solution to the Euler-Lagrange equation is q0(τ) = A sinhω(τ − τ0), which contains two

arbitrary constants A and τ0. With the usual boundary conditions this becomes

q0(τ) =
q2 sinhω(τ − τ1)− q1 sinhω(τ − τ2)

sinhω(τ2 − τ1)
. (7.15)

From this classical solution we calculate the classical action SEcl , which determines the q-

dependence of the transition matrix

WE = f(τ1 − τ2)e
−SE

cl [q]/~. (7.16)

As explained in chapter 3, the function f can be determined in various ways, and one finds

WE =

√
mω

2π~ sinhω(τ2 − τ1)
exp

{
−mω [(q2

1 + q2
2) coshω(τ2 − τ1)− 2q1q2]

2~ sinhω(τ2 − τ1)

}
. (7.17)

By analytic continuation this is related to the results derived in problem 3.3.

The Euclidean theory is also interesting in its own right and Euclidean path integrals

have many interesting applications in physics. One of them is in equilibrium statistical

mechanics. To see this, consider the Euclidean version of (2.24),

WE(q2, τ2; q1, τ1) =
∑
n

〈q2|n〉 e−En(τ2−τ1)/~ 〈n|q1〉

=
∑
n

ϕn(q2)ϕ
∗
n(q1) e

−βEn , (7.18)

with

β ≡ τ2 − τ1
~

. (7.19)

This expression is proportional to a matrix element of the density operator ρβ for a statistical

ensemble with temperature T = (kβ)−1,

ρβ ≡
e−βH

Zβ
=

∑
n |n〉 e−βEn 〈n|

Zβ
, (7.20)

which satisfies ρβ = ρ†β and 〈q|ρβ|q〉 ≥ 0 for all |q〉. The normalization factor Zβ is just the

partition function, defined by

Zβ =
∑
n

e−βEn . (7.21)

(which gives Zβ =
∑

nNne
−βEn in case of a degeneracy Nn of the energy level En). This

expression can also be written as

Zβ =
∑
n

∫
dq ϕn(q)ϕ

∗
n(q) e

−βEn =

∫ ∞
−∞

dq1 dq2 W
E(q1, q2) δ(q1 − q2), (7.22)
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where in the second equation we used (7.18). In this way we find a path-integral represen-

tation for the partition function, 8

Zβ =

∫
q(0)=q(β~)

Dq exp

{
−1

~

∫ ~β

0

dτ LE(q, q̇)

}
, (7.23)

where we now integrate over all periodic paths, i.e. functions q(τ) that satisfy q(0) =

q(~β). The original real-time coordinate is thus replaced by a a compactified imaginary-

time coordinate, whose range extends over ~β.

To illustrate the above result, take, for instance, LE = 1
2
mq̇2 + V (q) and consider the

path integral for high temperature. (More precisely, for temperatures such that ~β is small

as compared to the typical scale set by the variations of the potential.) In that case the paths

cannot deviate too much from their boundary values, since this will induce large values for

the kinetic energy which suppresses the integrand in (7.23). Hence we may approximate∫ ~β
0
dτ V (q(τ)) by ~βV (1

2
[q1 + q2]), so that

WE(q2, ~β; q1, 0) ≈ exp
{
−βV (1

2
[q1 + q2])

}∫
Dq exp

{
−1

~

∫ ~β

0

dτ 1
2
mq̇2

}
. (7.24)

The calculation of the path integral is now simple. From (7.14) we find

WE(q2, ~β; q1, 0) ≈ exp
{
−βV (1

2
[q1 + q2])

}√ m

2π~2β
exp

{
−m(q2 − q1)

2

2~2β

}
. (7.25)

Using (7.22) then gives

Zβ =

√
m

2π~2β

∫
dq e−βV (q), (7.26)

which is just the partition function based on the Boltzmann distribution.

We will now calculate the partition function of the harmonic oscillator from (7.17). How-

ever, we will allow ourselves a small extension and evaluate (7.23) for both periodic and

antiperiodic paths. The partition function will be denoted by Z
(±)
β corresponding to the

boundary condition q(~β) = ±q(0). (We will motivate that extension later in these lec-

tures). The result is

Z
(±)
β =

∫
dq

√
mω

2π~ sinh β~ω
exp

{
−mω(cosh β~ω ∓ 1) q2

~ sinh β~ω

}
=

√
mω

2π~ sinh β~ω

√
π~ sinh β~ω

mω(cosh β~ω ∓ 1)

=
(
eβ~ω/2 ∓ e−β~ω/2)−1

. (7.27)

8In the limit of zero temperature (β → ∞) the groundstate dominates the partition sum (7.21) and we
are dealing with the Euclidean theory whose analytic continuation leads to the Minkowski theory.
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Therefore

Z
(+)
β =

e−β~ω/2

1− e−β~ω =
∞∑
n=0

e−β~ω(n+ 1
2
), (7.28)

and

Z
(−)
β =

(
1∑

n=0

e−β~ω(n− 1
2
)

)−1

. (7.29)

We see that the partition function for periodic boundary conditions is that of a quantum

harmonic oscillator, as expected. It turns out that the inverse partition function for antiperi-

odic boundary conditions equals the partition function of a ”fermionic” harmonic oscillator

(which has a groundstate with energy −1
2
~ω and an excited state with energy 1

2
~ω). It is

not easy to explain why we get the inverse partition function. This has to do with the fact

that fermionic path integrals require the use of so-called anticommuting c-numbers. The

significance of this statement will be explained in due course.

We end this chapter by computing the euclidean correlation function for the harmonic

oscillator in the operator formulation. The canonical momentum was defined in terms of the

real-time (Minkowski) theory,

p(t) =
∂L(q, q̇)

∂q̇
, where q̇ =

dq

dt
. (7.30)

In the imaginary-time formulation, the relation between p and q reads

p = i
∂LE(q, q̇)

∂q̇
, where q̇ =

dq

dτ
. (7.31)

Quantum-mechanically, p and q are still represented by the same (Schrödinger) operators

satisfying the standard commutation relation [q, p] = i ~. In the Heisenberg picture we have

to deal with the operators

q(τ) = e
1
~ H τq e−

1
~ H τ , p(τ) = e

1
~ H τp e−

1
~ H τ , (7.32)

which can be decomposed in terms of creation and annihilation operators a(τ) = a exp(−ωτ)
and a†(τ) = a† exp(ωτ) in the usual manner (cf. (5.17)),

q(τ) =

√
~

2mω

(
a(τ) + a†(τ)

)
,

p(τ) = −imω
√

~
2mω

(
a(τ)− a†(τ)

)
. (7.33)

Observe that p(τ) satifies p = im q̇. The reality conditions in the Minkowski case (q†(t) =

q(t), etc.) have to be replaced by the so-called reflection positivity conditions,

q(τ)† = q(−τ) , p(τ)† = p(−τ). (7.34)
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Note that the factor i in (7.31) is crucial for the pseudo-reality of p(τ).

Now we are ready to compute correlation functions in the Euclidean formalism. For the

harmonic oscillator the two-point function is computed as in section 6.1,

G(τ, τ ′) =
τ2〈0|T (q(τ) q(τ ′))|0〉τ1

τ2〈0|0〉τ1
=

~
2mω

{
θ(τ − τ ′)e−ω(τ−τ ′) + θ(τ ′ − τ)eω(τ−τ ′)

}
. (7.35)

We use again the integral representation (6.13) of the θ-function to find

G(τ, τ ′) =
~

2mω

−1

2πi

∫ ∞
−∞

dq
1

q + iε

(
e−i(q−iω)(τ−τ ′) + e+i(q−iω)(τ−τ ′)

)
. (7.36)

We shift the integration contour a distance ω into the upper half of the complex q-plane. As

we don’t encounter poles in the integrand, which falls off at infinity, we thus obtain

G(τ, τ ′) =
~

2πm

∫ ∞
−∞

dq
e−iq(τ−τ

′)

q2 + ω2
. (7.37)

This is precisely (7.7), which was derived by analytic continuation of the real-time correlation

function.

The above Euclidean correlation functions pertain to the case of zero temperature. At

finite temperature the correlation functions take the form of ensemble averages. For instance,

the two-point function reads (0 ≤ τ, τ ′ < ~ β)

Gβ(τ, τ
′) = Tr

[
ρβ Tτ (q(τ) q(τ

′))
]
− Tr

[
ρβ q(τ)

]
Tr
[
ρβ q(τ

′)
]
, (7.38)

where Tτ denotes the ordering with respect to the Euclidean time variable τ . One can show

that this correlation functions corresponds to the derivative of the logarithm of the partition

function (which equals the free energy times −β) with respect to an external source (see

problem 7.5).

Problem 7.1 :

Following the derivation in chapter 2, present the corresponding derivation of the Euclidean

path integral (7.12).

Problem 7.2 :

Consider the limit of (7.17) for T = τ2 − τ1 → ∞ and derive the groundstate energy and

wave function of the harmonic oscillator. Try to do the same for (7.14) and explain why

matters are more subtle in this case.

54



Problem 7.3 :

Prove that G(τ, τ ′) as given in (7.37) is a solution of (∂2
τ − ω2)G(τ, τ ′) = − ~

m
δ(τ − τ ′).

Problem 7.4 :

The correlation function Gβ is defined in (7.38) with τ and τ ′ belonging to the interval

(0, ~β). Show that it actually depends on the difference τ − τ ′, which is thus restricted to

the interval −~β < τ − τ ′ ≤ ~β. Prove that Gβ takes the same value for τ − τ ′ = −~β,

0, ~β. Restrict τ − τ ′ to the left-half of the interval (so −~β < τ − τ ′ ≤ 0) and prove the

periodicity property Gβ(τ − τ ′) = Gβ(τ − τ ′ + ~ β).

Problem 7.5 :

Write down the path-integral representation for Zβ in the presence of a source term
∫
dτ J(τ) q(τ).

Argue that J must be periodic and show that the correlation function (7.38) corresponds

to the second derivative of lnZβ with respect to the external source. Subsequently, argue

that the correlation function can be expanded in terms of functions periodic in τ − τ ′ with

frequencies equal to ωn = πn/(~ β) where n are even integers. These frequencies are known

as the Matsubara frequencies.

Problem 7.6 :

Using the τ -periodicity property, derive, for the harmonic oscillator, an expansion of Gβ(τ −
τ ′) in terms of the even Matsubara frequencies along the lines of what we did in section 6.2

(i.e., expanding the variables q(τ) in terms of periodic functions). Show that it satisfies

(∂2
τ − ω2)Gβ(τ − τ ′) = − ~

m
δ(τ − τ ′) ,

for 0 ≤ τ, τ ′ < ~ β. Moreover, prove that in the zero-temperature limit, by converting the

sum into an integral, one obtains (7.37).

Problem 7.7 : Flux periodicity

Consider an electrically charged particle with mass m and charge q moving on a circle C of

radius R in the (x, y)-plane. Inside the circle is a magnetic field such that the flux encircled

by C is equal to Φ. The circle is parametrized by (x, y) = (R cos θ, R sin θ) and 0 ≤ θ < 2π.

The classical action then reads

SΦ[θ] =

∫
dt
{

1
2
mR2 θ̇2 + qR θ̇A

}
,

with A = Φ/2πR the magnitude of the vector potential along the circle due to the enclosed

flux. (Observe that the second term in the right-hand side equals (in cartesian coordinates)
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precisely the well-known interaction term
∫
dt q ~̇x · ~A(~x), which is responsible for the Lorentz

force.)

i) Give the expression for the momentum pθ and show that the Hamiltonian takes the

form

H(pθ, θ) =
(pθ − ~Φ/Φ0)

2

2mR2
,

with Φ0 = h/q the flux quantum for this problem. After quantisation pθ and θ are two

operators satisfying the commutation relation [θ, pθ] = i~. How does pθ act therefore

on the wavefunction Ψ(θ, t)? Specify the boundary conditions on Ψ(θ, t) and determine

the eigenfunctions and eigenvalues of the operator pθ.

ii) Determine the eigenvalues of the Hamiltonian. What is your conclusion concerning the

energy spectrum {Eν(Φ)} and {Eν(Φ + Φ0)}?

With this Hamiltonian we can now derive a path-integral expression for the transition func-

tion WC,Φ(θ1, t1; θ0, t0) ≡ 〈θ1|e−iH(t1−t0)/~|θ0〉 in the usual way. Following the same steps as

in problem 3.6, the result takes the form

WC,Φ(θ1, t1; θ0, t0) =
∞∑

`=−∞

WΦ(θ1 + 2π`, t1; θ0, t0) ,

where WΦ(θ1, t1; θ0, t0) is the transition function for a particle with ’mass’ mR2 and charge

q that freely moves along the entire θ-axis. This means that −∞ < θ < ∞, while the

path-integral expression for WΦ(θ1, t1; θ0, t0) takes the form

WΦ(θ1, t1; θ0, t0) =

∫
Dθ eiSΦ[θ]/~ ,

with SΦ[θ] the classical action defined above.

iii) Using the explicit form of the action, show that

WΦ(θ1, t1; θ0, t0) = ei(θ1−θ0)Φ/Φ0WΦ=0(θ1, t1; θ0, t0) . (7.39)

Use the expression for the path integral for a free particle (cf. problem 3.1) to determine

the corresponding partition function Zβ(Φ). To do this, first present the expression for

the partition function as a sum over ` and determine the periodicity of Zβ(Φ).

iv) Subsequently, use the Poisson resummation rule (5.38) (integrated over a suitably cho-

sen function) and rewrite the previous result. Argue now that the resulting expression

is in agreement with your conclusions in i) and ii).
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8 Tunneling and instantons

Tunneling is one of the most interesting phenomena in quantum mechanics, which cannot

be described in perturbation theory in ~. It turns out that the Euclidean path integrals

introduced in the previous chapter offer a convenient framework for obtaining quantitative

results, at least in the semiclassical approximation. In certain cases this involves dealing

with so-called instanton solutions, as we will demonstrate shortly. Our starting point is the

path-integral representation of the Euclidean transition function,

WE(q2, τ2; q1, τ1) = 〈q2|e−
1
~H(τ2−τ1)|q1〉 =

∫
q(τ1)=q1
q(τ2)=q2

Dq(τ) e−
1
~S

E [q(τ)] . (8.1)

From this expression we intend to extract information about the energies and certain matrix

elements by considering the limit of large T . We will restrict ourselves to the Euclidean

Lagrangian LE = 1
2
q̇2 + V (q). In the semiclassical approximation we need the classical

trajectory. Hence we must consider solutions of the equations of motion, which read

q̈ =
∂V

∂q
. (8.2)

We assume that V (q) is bounded from below and by adding a suitable constant we ensure

that its minimum value is precisely equal to zero. Hence V (q) ≥ 0. One easily verifies (e.g.

by multiplying the above equation with q̇) that 1
2
q̇2−V (q) is a constant of the motion. Hence

we write
1
2
q̇2 − V (q) = E , (8.3)

with E a constant. Note that E is the energy for a particle moving in the (negative) potential

−V (q). Obviously

q̇ = ±
√

2(E + V (q)) , (8.4)

which can be integrated and yields the solution

τ2 − τ1 = ±
∫ q2

q1

dq√
2(E + V (q))

. (8.5)

The Euclidean action SEcl [q0] corresponding to the classical path q0(τ),

SEcl [q] =

∫ τ2

τ1

dτ
(

1
2
q̇2 + V (q)

)
, (8.6)

is obviously nonnegative for any trajectory, provided that τ2 > τ1. When the initial and

final times, τ1 and τ2, tend to ±∞, then the action will diverge, unless the endpoints q(τ1,2)

correspond to absolute minima of the potential (where V = 0), and the velocity will tend to
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zero. This implies that finite action solutions for infinite time intervals must have E = 0, at

least for solutions of the equation of motion (8.2). The action for solutions can be written

in a variety of ways,

SEcl [q0] =

∫ τ2

τ1

dτ
(
q̇2 − E

)
= −E(τ2 − τ1) +

∫ τ2

τ1

dτ q̇2 (8.7)

=

∫ τ2

τ1

dτ
(
|q̇|
√

2(E + V (q))− E
)

= −E(τ2 − τ1) + sgn q̇

∫ q2

q1

dq
√

2(E + V (q)) .

In the last expression we assumed that q̇ is of the same sign throughout the trajectory.

In the semiclassical approximation, discussed in chapter 3, we expand about a classical

trajectory with boundary values q(τ1,2) = q1,2, keeping terms quadratic in the deviations

from this trajectory over which we subsequently integrate (cf. (3.5),(3.10)). Formally this

integral leads to a determinant of a differential operator. Up to certain normalizations we

thus find

WE(q2, τ2; q1, τ1) =
[
det
(
− ∂2

τ + V ′′(q0(τ))
)]−1/2

e−S
E
cl [q0(τ)]/~

{
1 + O(~)

}
, (8.8)

where V ′′ = ∂2V/∂q2 and the differential operator in the determinant acts on functions that

vanish at the boundaries τ1,2. It is now clear why we are interested in classical paths with

finite action, because otherwise, the above expression will simply vanish. It is sometimes

convenient to consider ratios of determinants to avoid some of the subtleties with normal-

ization factors. Therefore one often divides the above determinant by the determinant of

a similar operator, but now with V ′′ replaced by a suitably chosen constant (such as the

value of V ′′ taken at a minimum of the potential). The latter determinant is known from

the explicit expression for the transition function of the harmonic oscillator (7.17). Setting

τ2 = −τ1 = T/2 we rewrite (8.8) as

WE(q2, τ2; q1, τ1) =

√
ω

2π~ sinhωT
K e−S

E
cl [q0(τ)]/~

{
1 + O(~)

}
, (8.9)

where

K =

∣∣∣∣ det (− ∂2
τ + ω2)

det (− ∂2
τ + V ′′(q0(τ)))

∣∣∣∣
1
2

. (8.10)

The factor K depends on T and on ω. In principle ω is chosen such that K remains finite

in the limit for large T . Later we will see that subtleties may arise when T tends to infinity,

but for the moment we ignore possible complications and continue.

To elucidate our strategy let us first consider a simple example of a potential with a

single minimum, say at q = a, so that V (a) = 0. We consider the Euclidean path integral

for boundary values q1 = q2 = a. There is only a single solution connecting these endpoints,
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Figure 1: A double-well potential V (q) and the instanton solution, which gives the classical
trajectory for a particle moving between the maxima of −V (q) in a time interval T .

namely q(τ) = a, which has vanishing action. Any other classical trajectory starting at

q1 = a will have a certain velocity and thus a finite energy at q = a; however, once the

particle moves away from q = a it will never return and acquire more and more kinetic

energy and thus increase its action until it reaches the endpoint q2, which cannot be equal

to a.

Choosing ω2 = V ′′(a), the factor K equals unity and we find

WE(a, T/2; a,−T/2) =

√
ω

2π~ sinhωT

T→∞−→
√

ω

π~
e−ωT/2 . (8.11)

This shows that the groundstate energy is equal to 1
2
~ω, up to higher orders in ~, while the

overlap of |a〉 with the groundstate |0〉 satisfies |〈a|0〉| = [ω/π~]1/4. This result is obtained

in the semiclassical approximation and is exact for the harmonic oscillator (cf. problem 7.2).

8.1 The double-well potential

Let us now consider the more complicated case of a double-well symmetric potential, V (q) =

V (−q), with minima at q = ±a. Just as above we will choose the boundary values q1,2

equal to the positions of the classical minima. Hence two different transition functions are

of interest, namely

W (±a, T/2;±a,−T/2) = 〈±a|e−HT/~| ± a〉 ,
W (±a, T/2;∓a,−T/2) = 〈±a|e−HT/~| ∓ a〉 , (8.12)

where we identified certain matrix elements by virtue of the reflection symmetry q ↔ −q.
Because this is a symmetry of the Hamiltonian, energy eigenfunctions ψ(q) must be either

symmetric or antisymmetric in q. Classically there are two independent groundstates q = ±a.
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Without tunneling, these states would acquire the same semiclassical energy equal to 1
2
~ω,

where ω2 = V ′′(a) = V ′′(−a). However, due to quantum tunneling the two states will

mix and this causes a shift in the energy levels, such that the symmetric state acquires the

lowest energy. Our goal is to calculate these shifts in the energy levels in the semiclassical

approximation.

Let us first keep T finite. In that case there is again a unique classical solution with

q1 = q2 = ±a, which is equal to q(τ) = a. This solution has zero energy and zero action.

Also there is always a solution with q1 = −q2 = ±a, which is shown in Fig. 1. This solution

is known as the instanton9. The corresponding solution −q(τ) is called anti-instanton. Let

us first discuss some of its properties. For finite T the classical trajectory connecting the two

maxima in −V (q) must carry a finite energy, simply because the particle should move away

from the maximum with a nonzero velocity. For the instanton this velocity equals
√

2E, so

that the endpoints of the solution are approached linearly, i.e.

q(τ) ≈ ±a+
√

2E(τ ∓ 1
2
T ) , for τ → ±1

2
T . (8.13)

A number of features changes when T becomes infinite. In that case the velocity at q = ±a
must vanish, because otherwise the particle will reach the other maximum in a finite time

(after which it continues to move beyond the second maximum and will never return). So

E must be zero. This implies that the particle reaches the endpoints at q = ±a in an

exponentially slow manner. We can determine this from (8.5). Assuming that we choose

both τ1 and τ2 > τ1 large so that the particle moves closely to one of the two maxima (in

other words, τ1 and τ2 are both in the same asymptotic tail of the instanton solution). Then

9In the limit T → ∞ the instanton solution may be regarded as a finite-energy static soliton in 1 + 1
dimensions. To see this, let q also depend on a real time variable t and interprete τ as a spatial coordinate.
Consider then the action

S[q(t, τ)] =
∫

dt dτ
(

1
2 (∂tq)2 − 1

2 (∂τq)2 − V (q)
)

.

For static solutions q satisfies the equation of motion ∂2
τ q = V ′(q), which is just (8.2), and defines some

extended object in one dimension. Its energy equals
∫

dτ (∂τq)2, with the integral extended to the whole τ -
interval. (Previously this quantity was identified with the action, (cf. (8.7)), where the integration constant
E (which is not the energy of the extended object) must vanish in order that the energy be finite.) The
energy of the extended object receives its relevant contributions from the region around τ = 0, where the
derivative differs appreciably from zero, so that the energy density is concentrated here. Hence we describe
a extended object localized at τ = 0. However, τ is just the Euclidean time variable, so that in some sense
we are describing a (somewhat smeared out) “event” at τ = 0. This motivated the name “instanton”, or
“pseudoparticle”, for this solution.
In a field theory in 1 time dimension and d−1 space dimensions we can thus define instantons as finite-action
solutions of the d-dimensional Euclidean version of the theory. These solutions can be regarded as static
finite-energy solutions of a theory in 1 time and d space dimensions.
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we may approximate the potential around q = ±a by V = 1
2
ω2(q ∓ a)2, so that

τ2 − τ1 ≈ ±
1

ω

∫ q(τ2)

q(τ1)

dq

a∓ q
= − 1

ω
ln
a∓ q(τ2)

a∓ q(τ1)
. (8.14)

This leads to (|τ | � 1)

q(τ) ≈ ±a
[
1− c e−ω|τ |

]
, (8.15)

with c some positive constant. The action (8.7) remains finite in the T → ∞ limit and

receives its contribution mainly from the center of the instanton solution, where the velocity

differs substantially from zero. An explicit solution is discussed in problem 8.1.

There is a subtlety in the T → ∞ limit, because if T is really infinite, then there is no

reason to insist that the instanton solution goes through the origin. Stated differently, the

fact that the boundaries in τ have been shifted to infinity implies that we regain translational

symmetry in τ . If q0(τ) is a solution, then also q0(τ+κ), with κ some arbitrary finite constant

must be a solution of (8.2). Hence we are dealing with a continuous set of solutions and we

can thus consider two solutions that are arbitrarily close, i.e., q′ = q0 + δq. Subsituting both

sides into the differential equation (8.2), assuming that both q′ and q0 satisfy the equation,

and retaining terms linear in δq, we find that δq must satisfy the differential equation[
− ∂2

τ + V ′′(q0(τ))
]
δq(τ) = 0 . (8.16)

The function δq(τ) is called a zero-mode, because it represents an eigenfunction of the differ-

ential operator with zero eigenvalue. So whenever we have a continuous set of solutions there

is an associated set of zero modes that satisfy the above equation. Continuous degeneracies

always appear whenever a system has a continuous symmetry. In the case at hand, the

symmetry is provided by the translations in τ and the zero-mode solution takes the form

δq = q̇0, simply because q0(τ +κ) ≈ q0(τ)+κq̇(τ)+O(κ2). Indeed, one easily verifies that q̇0

is a solution of the differential equation (8.16). As long as T is finite, the zero-mode solution

poses no difficulty; the shifted solutions do not satisfy the appropriate boundary condition

and q̇0 does not vanish at τ = ±T/2.10 Obviously the presence of the boundary conditions

suppresses the degeneracy, but when T is infinite this suppression does not take place.

Hence if the time interval is really infinite then there are many solutions that move

between maxima of −V (q) in an infinite time interval. First of all, the (anti-)instanton

solution itself can we shifted arbitrarily, but furthermore we can glue together a set of

instanton and anti-instanton solutions, separated by infinite (or at least large compared to

1/ω) time intervals. While there is precisely one exact classical solution when the time

10Remember that we are taking the determinant of a differential operator acting on functions that vanish
on the boundary.
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interval is finite, there is an infinite number of approximate solutions that become closer and

closer to an exact solution in the T → ∞ limit. Furthermore, the ratio of determinants K

defined in (6.9) will diverge, because the differential operator in the numerator has zero-

modes whose eigenvalues vanish as shown in (8.16).

We should stress that these two features, the degeneracy of the solutions and the pres-

ence of the zero-modes, are intimately connected. Both seem to lead to divergences, but as

it turns out their combined effect will remain finite. With this in mind let us proceed and

evaluate first the one-instanton contributions. We thus want to determine the semiclassi-

cal contribution of one-instanton solutions to the functional integral with boundary values

q(−∞) = −a and q(∞) = a. For an infinite time interval, we are confronted by an infinite

variety of instanton solutions, which we can characterize by the time τ0 at which the solution

is zero. We will call τ0 the “position” of the instanton. Previously, with a finite symmetric

time interval (−T/2, T/2), the instanton’s position was necessarily equal to τ = 0, because

of symmetry reasons. However, for an infinite time interval we can shift τ to τ − τ0 and

obtain an instanton at τ0.

Now we want to extract the integration over the instanton position outside the functional

integral. We do this by means of the following trivial identity,∫ ∞
−∞

dτ0 |q̇(τ0)| δ(q(τ0)) = 1 , (8.17)

which holds for any function q(τ0) that vanishes precisely once along the infinite τ -axis.

As we will be considering a path integral with boundary values q = ±a at τ = ±∞, we

know that any function must have an odd number of zeroes. By restricting the semiclassical

corrections to the one-instanton sector, we assume precisely one zero. Later we shall include

other solutions.

Inserting this identity under the functional integral, interchanging the order of τ0 inte-

gration with the path-inegral and identifying q in (8.17) with the function q(τ) in the path

integral, we obtain the following result,

W (a,∞;−a,−∞) =

∫ ∞
−∞

dτ0

∫
q(−∞)=−a

q(∞)=a

Dq(τ) δ(q(τ0)) |q̇(τ0)| e−
1
~S

E [q(τ)] . (8.18)

The path integral thus extends over all possible trajectories between q = ∓a at τ = ∓∞
which vanish (once) at a given time τ0. According to (8.18) the path integral factorizes into

two parts, one associated with paths running from q(−∞) = −a to q(τ0) = 0, and the other

one corresponding to paths running from q(τ0) = 0 to q(∞) = a. These two path integrals

can subsequently be evaluated in the semiclassical approximation. Because of the boundary

value at τ0, there are no problems with degenerate solutions and corresponding zero-modes.
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In principle, the semiclassical approximation is rather straightforward. Because of the

symmetry of the potential the classical action associated with the positive or the negative

branch of the instanton solution is equal to one-half of the action of a full instanton. In

what follows, we denote the action of a full instanton by S0, so that the semiclassical results

equals exp(−1
2
S0/~), times a determinant factor corresponding to the integral over the small

deviations about the classical instanton solution. We write this determinant in a form that is

familiar from the Gel’fand-Yaglom representation (see problem 3.5), but now in the context

of Euclidean time τ . For instance, for the time interval (τ0, τ0 + T/2) we write

det
[
− ∂2

τ + V ′′(q0(τ))
]∣∣∣
q0(τ0)=0; q0(τ0+T/2)=a

= 2π~ Ψ(τ0 + T/2, τ0) , (8.19)

and there are similar expressions for different boundary values. We return to the definition

and the subsequent evaluation of Ψ shortly. For the moment we note that we need a similar

expression for the time-interval (τ0 − T/2, τ0). Furthermore, we also have to incorporate

the factor |q̇(τ)| that appears in (8.18), but as deviations of the classical trajectories induce

corrections of order
√

~, we can approximate it by its classical value. According to (8.4),

this value is equal to
√

2V (0). Hence we write

∫
q(−∞)=−a

q(∞)=a

Dq(τ) δ(q(τ0)) |q̇(τ0)| e−
1
~S

E [q(τ)] =
1

2π~

√
2V (0)

Ψ(τ0 + T/2, τ0) Ψ(τ0, τ0 − T/2)
e−S0/~ .

(8.20)

At this point we should first discuss the definition and evaluation of the function Ψ(τ, τ ′),

which is a function of the (Euclidean) time difference τ − τ ′. It is defined by the following

conditions, [
− ∂2

τ + V ′′(q0(τ))
]
Ψ(τ, τ ′) = 0 , Ψ

∣∣∣
τ=τ ′

= 0 ,
dΨ

dτ

∣∣∣
τ=τ ′

= 1 . (8.21)

Hence Ψ satisfies a time-independent Schrödinger equation with τ playing the role of the

coordinate and the τ -dependent potential given by V ′′(q0(τ)). Note that this potential is a

function of τ through a given instanton path q0(τ). For reference purposes, let us assume

that q0(τ) is the (anti)instanton solution centered at τ = τ0 in the middle of a τ -interval of

size T , where T is supposed to tend to infinity. Therefore the potential V ′′(q0(τ)) behaves

as follows. It is symmetric in (τ − τ0) and for |τ − τ0| � 1 it tends to a positive constant

ω2 = V ′′(a). Around τ = τ0 it exhibits a dip. It becomes negative and its minimum at

τ = τ0 is equal to V ′′(0).

The second-order differential equation (8.21) has two independent solutions. We will

define these two independent solutions and use them extensively to decompose the various
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solutions of the differential equations with various boundary and/or normalization condi-

tions. One solution that we have already encountered, is proportional to the zero-mode

solution. It is symmetric in τ − τ0 and we define it by ϕ(τ) = q̇0(τ)/q̇0(τ0), so that its value

at τ = τ0 is normalized to unity. The second independent solution can therefore be chosen

antisymmetric in τ − τ0. We denote it by ψ(τ) and we normalize it by requiring ψ̇(τ0) = 1.

Obviously ψ itself vanishes at τ = τ0. The so-called Wronskian associated with these so-

lutions, defined by ϕψ̇ − ψϕ̇, is constant and its value is equal to unity, as one can verify

at τ = τ0. Asymptotically, solutions to the differential equation behave as exp[±ω(τ − τ0)].

However, we know that the zero-mode solution ϕ vanishes asymptotically (this is qualita-

tively clear, but follows explicitly from (8.15)), so that we expect the second solution ψ to

contain an exponentially increasing factor. Therefore, the two solutions satisfy the following

properties

ϕ(τ0) = 1 , ϕ̇(τ0) = 0 , ϕ(τ) ≈ C+ e−ω|τ−τ0| for |τ − τ0| → ∞ , (8.22)

ψ(τ0) = 0 , ψ̇(τ0) = 1 , ψ(τ) ≈ sgn(τ − τ0)C− eω|τ−τ0| for |τ − τ0| → ∞ .

From the value of the Wronskian we derive that C+ and C− are not independent and satisfy

the condition 2ω C+C− = 1.

Armed with this information we determine straigthforwardly, in the limit T → ∞, the

two functions Ψ in (8.20).

Ψ(τ0 + T/2, τ0) ≈ C− eωT/2 , Ψ(τ0, τ0 − T/2) ≈ 1

2ω C+

eωT/2 . (8.23)

The first result is rather obvious. To determine second one one first writes the solution

for Ψ(τ, τ0 − T/2) near τ ≈ τ0 − T/2, which is equal to ω−1 sinh[ω(τ − τ0 + T/2)]. This

solution decomposes into ϕ and ψ and by matching the exponential factors far away from

the instanton locations, one can determine the explicit decomposition,

Ψ(τ, τ0 − T/2) =
eωT/2

2ωC+

ϕ(τ) +
e−ωT/2

2ωC−
ψ(τ) . (8.24)

When choosing τ = τ0, the second term proportional to ψ vanishes so that one obtains the

required result (8.23). Of course, for a specific example the above results can be worked out

explicitly, as we will see in problem 8.2. Later on in this chapter, we will have to consider a

similar matching for the multi-instanton solutions.

After this digression we continue the determination of (8.20). First we rewrite the corre-

sponding expression as √
ω

π~
e−ωT/2

√
S0

2π~
K ′ e−S0/~ . (8.25)
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Subsequently we establish that Ψ(τ0 + T/2, τ0) Ψ(τ0, τ0 − T/2) ≈ C2
− exp(ωT ), and we use

this result to rewrite the (positive) factor K ′ as

K ′ = lim
T→∞

√
V (0)

ω S0

√
eωT

Ψ(τ0 + T/2, τ0) Ψ(τ0, τ0 − T/2)
=

√
V (0)

S0 ω C2
−
. (8.26)

Integrating (8.25) over the instanton position τ0 leads to an extra factor T ,

W (a,∞;−a,−∞) = lim
T→∞

√
ω

π~
e−ωT/2

√
S0

2π~
K ′ T e−S0/~ . (8.27)

Clearly this answer does not depend exponentially on T , due to the degeneracy of the one-

instanton solutions, so that we cannot extract a value for the energy.

Before continuing let us explain the reasons for extracting the prefactor
√
S0/(2π~) in

(8.25). The factor
√
S0 in the numerator is precisely the norm of the zero-mode q̇0, as can

be seen from (8.7) upon subtituting E = 0. The factor
√

2π~ in the denominator arises

because of the fact that we were dealing with a path integral in which the paths are fixed at

some intermediate value (namely at τ0). Each integration over a point of the path at a given

time carries a factor 1/
√

2π~, as is shown in (2.21). These factors are almost completely

cancelled by the appropriate measure of the path integral. The very same factor in (8.19) is

a remnant of this. Compared to a path integral over unrestricted paths, a path integral over

paths fixed at some intermediary time, carries a relative factor 1/
√

2π~. When integrating

over the intermediary position, the correponding Gaussian integral yields a factor
√

2π~, so

that the relative factor disappears.

The multi-instanton solutions can now be treated in the same way. Hence we consider

the contribution in the path integral of paths q(τ) that cross the τ -axis 2n+1 times and ap-

proximate them by an alternating sequence of n+1 instanton and n anti-instanton solutions.

Here we assume that the instantons remain localized and separated by infinite time intervals,

the so-called dilute-instanton approximation. Again we use the trick based on (8.17) to write

the path integral as an integral over instanton positions τ0 � τ2 � · · · � τ2n−2 � τ2n and

anti-instanton positions τ1 � τ3 � · · · � τ2n−1. Keeping the (anti-)instanton positions fixed

for the moment, we are interested in the functional integral∫
q(−∞)=−a

q(∞)=a

Dq(τ)
( 2n∏
i=0

δ(q(τi)) |q̇(τi)|
)

e−
1
~S

E [q(τ)] . (8.28)

This integral can be evaluated and gives rise to the following result( 1

2π~

) 2n+2
2

√
(2V (0))2n+1

Ψ(T/2 + T/2, τ2n) Ψ(τ2n, τ2n−1) · · ·Ψ(τ1, τ0) Ψ(τ0, τ0 − T/2)
e−(2n+1)S0/~ .

(8.29)
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To further determine this expression we need an expression for Ψ(τi+1, τi), where τi and τi+1

denote two consecutive, widely separated (anti-)instanton postitions. It can be obtained

by considering Ψ(τ, τi) at an intermediate value between de instanton and anti-instanton

and comparing its form by extrapolating from both sides. Obviously Ψ(τ, τi) = ψi(τ) ≈
C− exp[ω(τ − τi)], where the subscript i indicates that the functionϕi is defined with respect

to the i-th (anti)instanton, and one must be able to write this as a linear combination for

the functions ϕi+1 and ψi+1, but now defined with respect to the (anti)instanton at τi+1.

Matching the exponentials eωτ leads to

Ψ(τ, τi) =
C− e−ωτi

C+ e−ωτi+1
ϕi+1(τ) + αψi+1(τ) , (8.30)

where α is some unknown coefficient. From this expression one derives

Ψ(τi+1, τi) ≈ 2ω C2
− eω(τi+1−τi) . (8.31)

Substituting this result we obtain the following result for (8.28),√
ω

π~
e−ωT/2

[√ S0

2π~
K ′e−S0/~

]2n+1

, (8.32)

where K ′ was defined earlier in (8.26).

Subequently we integrate over the 2n + 1 (anti-)instanton positions. However, we have

to take into account that every instanton must be followed by an anti-instanton, and vice

versa, until one reaches the end. Hence the integral takes the form∫ T/2

−T/2
dτ2n

∫ τ2n

−T/2
dτ2n−1 · · ·

∫ τ2

−T/2
dτ1

∫ τ1

−T/2
dτ0 =

1

(2n+ 1)!
T 2n+1 . (8.33)

Substituting this expression into the path integral and summing over all multi-instanton

configurations gives rise to

W (a,∞;−a,−∞) = lim
T→∞

√
ω

π~
e−ωT/2

∞∑
n=0

1

(2n+ 1)!

[√ S0

2π~
K ′ T e−S0/~

]2n+1

. (8.34)

Of course, the same result is obtained when interchanging the endpoints and considering

paths running from q = a to q = −a. But multi-instanton solutions contribute also when

the endpoints are identical, except that the numbers of instantons and anti-instantons must

then be equal, so that the sum runs over even powers of T ,

W (a,∞; a,−∞) = lim
T→∞

√
ω

π~
e−ωT/2

∞∑
n=0

1

(2n)!

[√ S0

2π~
K ′ T e−S0/~

]2n
. (8.35)
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Note that we included the zero-instanton contribution (8.11).

Both results (8.34) and (8.35) can be summed and we obtain

W (a,∞;±a,−∞) = lim
T→∞

1
2

√
ω

π~
e−ωT/2

×
{

exp
[√ S0

2π~
K ′ T e−S0/~

]
± exp

[
−
√

S0

2π~
K ′ T e−S0/~

]}
. (8.36)

After this summation the result depends exponentially on T and we can extract the results

for the energy and the wave functions. We clearly distinguish two exponential factors cor-

responding to two different intermediate states in the evolution operator. One corresponds

to the ground state, which we expect to be symmetric. The other one, corresponding to an

exited state, is antisymmetric in q → −q. We denotes these states by |S〉 and |A〉 and we

use that 〈−a|S〉 = 〈a|S〉 and 〈−a|A〉 = −〈a|A〉. In this way we extract the correponding

energy levels denoted by ES and EA,

ES
A

= 1
2
~ω ∓ ~

√
S0

2π~
K ′ e−S0/~ . (8.37)

As expected, the ground state (with energy ES) is symmetric under the reflection symmetry

q → −q (cf. problem 8.3). Observes that these answers cannot be obtained form standard

perturbation theory, which would yield a power series in ~.

8.2 The periodic potential

As a third application we consider the periodic potential with minima at q = na, with n an

integer, where periodicity interval of the potential is equal to a. Then the eigenstates of the

Hamiltonian can be chosen such that they are simultaneously eigenstates of the translation

operator T , which shifts the coordinate q to q+a. This translation operator commutes with

the Hamiltonian and must be a unitary operator, so that its eigenvalues can be written as

a phase factor. Hence we expect that eigenfunctions ψ(q) will be quasi-periodic, i.e., they

will satisfy ψ(q + Na) = exp(iθN)ψ(q) for some phase θ. This property will be confirmed

below.

Let us now repeat the semiclassical instanton approximation. Using the same steps as

above, we can sum over the solutions consisting of instanton and anti-instantons. However,

in this case there is no correlation in the ordering of instantons and anti-instantons as

an instanton does not have to be followed by an anti-instanton. The integration over n+

instanton and n− anti-instanton positions yields therefore a factor

T n+

n+!

T n−

n−!
.
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The transition function between two states |`a〉 and |(`+N)a〉 therefore takes the form

W ((`+N)a,∞; `a,−∞) = lim
T→∞

√
ω

π~
e−ωT/2

∞∑
n+−n−=N

1

n+!n−!

[√ S0

2π~
K ′ T e−S0/~

]n++n−

.

(8.38)

Using the following representation of the Kronecker-delta for integers n,

δn,0 =
1

2π

∫ π

−π
dθ eiθn , (8.39)

and inserting it into the above expression with n replaced by N − n+ + n−, we can perform

the sums in (8.38) under the θ-integral by summing over unrestricted integers n±. The

instantons and anti-instantons thus yield a factor

exp
[√ S0

2π~
K ′ T e−S0/~∓iθ

]
, (8.40)

respectively. The final result takes the form

W ((`+N)a,∞; `a,−∞) = lim
T→∞

√
ω

π~
e−ωT/2

× 1

2π

∫ π

−π
dθ eiθN exp

[
2 cos θ

√
S0

2π~
K ′ T e−S0/~

]
. (8.41)

In (8.41) we distinguish a variety of exponential factors associated with continuous band

of energies

Eθ = 1
2
~ω − 2~ cos θ

√
S0

2π~
K ′ e−S0/~ . (8.42)

Denote the corresponding eigenstates by |θ〉 and insert a complete set of eigenstates into

〈(`+N)a| exp(−HT/~)|`a〉. In the approximation that we are working with, only the states

|θ〉 contribute, as is obvious from (8.41), so that we conclude

〈(`+N)a|θ〉 〈θ|`a〉 =

√
ω

π~
eiθN , (8.43)

or

〈(`+N)a|θ〉 = eiθN 〈`a|θ〉 , and |〈`a|θ〉| =
[ ω
π~

]1
4
. (8.44)

We conclude that we are dealing with a continuous band of eigenstates with energy (8.42),

characterized by an angle θ, which has a two-fold degeneracy. This band structure is very

characteristic in solid-state physics and is, for instance, extremely relevant when describing

the behaviour of electrons in solids.
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Problem 8.1 :

Consider the (anti-)instanton solutions for the double-well potential

V (q) =
ω2

8a2
(a2 − q2)2 , (8.45)

and show that (for T = ∞) it takes the form

q(τ) = a tanh
[

1
2
ω(τ − τ0)

]
, (8.46)

where τ0 is the instanton “position” (the time where the velocity is maximal and q vanishes).

Finally show that the action equals SEcl [q(τ)] = 2
3
ωa2.

Problem 8.2 :

Reconsider the Gel’fand-Yaglom method for the calculation of determinants for the Euclidean

case (cf. problem 3.5). As before the semiclassical result takes the form F (τ ′, τ) exp(−S/~),

with S the action corresponding to the classical path. The prefactor is equal to

F (τ, τ ′) =
1√

2π~Ψ(τ, τ ′)
,

where Ψ is proportional to the determinant of the differential operator [−∂2
τ +V ′′(q0(τ))] for

functions that vanish at the boundary. Prove that Ψ is a solution of the differential equation[
− ∂2

τ + V ′′(q0(τ))
]
Ψ(τ, τ ′) = 0 , (8.47)

with boundary conditions Ψ(τ ′, τ ′) = 0 and ∂τΨ(τ, τ ′)|τ=τ ′ = 1. Discuss the large-time

behaviour.

Problem 8.3 :

Consider (8.36) and the matrix elements of exp(−HT/~) in the two-dimensional space

spanned by the states | ± a〉. Insert a complete set of eigenstates and argue that only two of

them, denoted by |S〉 and |A〉, contribute. Identify their corresponding energies with (8.37).

Find the overlap of the eigenfunctions with the states | ± a〉 and show that 〈a|S〉 = 〈−a|S〉,
〈a|A〉 = −〈−a|A〉 and |〈a|S〉| = |〈a|A〉| = [ω/(4π~)]1/4. Interpret this result.

Problem 8.4 :

Show that V ′′ in the instanton background corresponding to the potential (8.45) takes the

form

V ′′ =
ω2

2a2
(3q2 − a2) = 1

2
ω2

[
2− 3

cosh2 1
2
ω(τ − τ0)

]
. (8.48)
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We consider the differential equation (8.47). This is just like solving the Schrödinger equation

with (8.48) as a potential for which we must determine the zero-energy solution. One such

solution is already known, as it correponds to the zero-mode. Show that it equals (with

certain normalization)

ϕ(τ) =
1

cosh2(ω(τ − τ0)/2)
.

This is the true groundstate wave function for the potential (8.48). It is nowhere zero and

vanishes exponentially at infinity. Show that it satisfies the following properties

ϕ(τ0) = 1 , ϕ̇(τ0) = 0 , ϕ(τ) ≈ 4e−ω|τ−τ0| for τ → ±∞ .

Prove that all zero-energy solutions behave asymptotically as exp(±ωτ) and can be chosen

symmetric or antisymmetric under (τ−τ0) → −(τ−τ0). We are interested in the independent

solution ψ (but only for large and positive τ) that satisfies the boundary conditions

ψ(τ0) = 0 , ψ̇(τ0) = 1 .

Show that any two solutions with equal eigenvalues, say f and g, have a constant Wronskian

f ġ − ḟ g. For ϕ and ψ use this observation to prove that

ϕ ψ̇ − ϕ̇ ψ = 1

Solve this equation at large τ to obtain an asymptotic prediction for ψ.

With the help of the above results show that the Gel’fand-Yaglom function Ψ behaves as

Ψ(τ0 + T/2, τ0) ≈
1

8ω
eωT/2.

Determine also Ψ(τ0, τ0 − T/2) by matching the solution at τ ≈ τ0 − T/2 to a linear com-

bination of ϕ and/or ψ. Calculate the constant K ′ and, using the result for the instanton

action found in problem 6.1, derive that the energies of the lowest-lying states are equal to

ES
A

= 1
2
~ω ∓ 2

√
~ω3a2

π
e−

2
3
ωa2/~ .

.

Problem 8.5 :

Consider a particle in a two-dimensional plane and denote its position ~q in polar coordinates

by q(cos θ, sin θ). The particle is constrained to move on the circle q = R and the Euclidean

action of the particle is, therefore, simply

SE[~q] =

∫
dτ 1

2
(~̇q)2 =

∫
dτ 1

2
R2(θ̇)2 .
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We want to calculate the transition function W (θ2, T/2; θ1,−T/2) in the semiclassical ap-

proximation (which is exact here). What are the classical paths that contribute to this

transition function? Calculate the classical action for each of them.

Using the (real-time) result of problem 3.6, part iii), write down the exact transition

function. Identify the contribution from the the various paths and observe that the prefactor

depends on T , and not on θ1 and θ2, as expected.

The exponential factors do not obviously yield the expected behaviour for large T . Use the

Poisson resummation formula (5.38) such that the expected form is obtained and identify the

contribution from the energy eigenvalues and the wave functions. Consider the dependence

on θ2 − θ1 for large and small T and explain the result.

Next consider a relativistic field theory for a complex scalar field φ(x) ≡ |φ(x)|eiθ(x),
which is also constrained to take values on the circle |φ(x)| = R/

√
2. The relevant Euclidean

action is now

SE[φ] =

∫
d4x ∂µφ

∗∂µφ =

∫
d4x 1

2
R2(∂µθ)

2 .

We want to calculate again the transition function W (θ2, T/2; θ1,−T/2), where θ1 and θ2

are constant (i.e., they do not depend on the space coordinates), in the semiclassical ap-

proximation (which is exact). Determine again the classical paths subject to these boundary

conditions and the corresponding value of the action. Assume a finite volume V of space at

this point.

Observing that the result obtained is almost entirely the same as that found above for

a single particle, try to justify the prefactor in the transition function, and use the Poisson

resummation formula exactly as above. Then take the limit V → ∞. What is now your

conclusion about the (θ2 − θ1)-dependence of the transition function in general and the

groundstate wave function in particular?

Problem 8.6 : Instantons and fermions

We consider a quantum mechanical model based on a bosonic coordinate x and a fermionic

coordinate ψ. The latter is a real, two-component spinor. Formulated in Euclidean time τ ,

the action equals

SE = 1
2

∫ +∞

−∞
dτ
{
q̇(τ)2 + U2(q) + ψTψ̇ + (ψTσ2ψ)

∂U(q)

∂q

}
, (8.49)

where ψT is the transposed of ψ and σ2 denotes the matrix σ2 =

(
0 −i
i 0

)
.

i) Derive the equations of motion for q(τ) and ψ(τ).
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ii) Consider the (infinitesimal) transformation rules

δq = εTσ2ψ ; δψ = q̇ σ2 ε− U(q) ε , (8.50)

where ε is a time-independent, anticommuting two-component spinor which serves as

a parameter of the transformation. Write down the variation δψT. Show that the

Lagrangian transforms into a total derivative. [Hint: Realize that ψ is anticommuting

so that εTσ2ψ = ψTσ2ε and, furthermore, that any product of more that two identical

spinors must vanish!]. Hence the action is invariant under (8.50). Consider first the

simple case when U = 0, and then prove invariance for general U(q).

iii) Consider the double-well potential, where

V (q) = 1
2
U2(q) , with U(q) = 1

2

√
λ
(
q2 − µ2

λ

)
. (8.51)

Observe that U ≤ 0 when q is located between the two minima of the potential. The

usual instanton solution is obtained by setting the fermions to zero and choosing

q0(τ) =
µ√
λ

tanh
[

1
2
µ(τ − τ0)

]
, ψ0 = 0 . (8.52)

Here τ0 is a collective coordinate associated with Euclidean time translations. The

instanton solution satisfies q̇(τ)+U(q(τ)) = 0 and has finite action. The anti-instanton

solution satisfies q̇(τ)−U(q(τ)) = 0. Show that the solutions of these linear differential

equations satisfy the field equation which is a second-order differential equation.

iv) There is another solution, for which the two-component spinor is non-zero. Such a

solution follows from the observation that q(τ) = q0(τ) + δq(τ) and ψ(τ) = ψ0(τ) +

δψ(τ), where δq and δψ are the result of the transformation (8.50) on the previous

solution, must satisfy the equations of motion. Show that this yields

q0(τ) =
µ√
λ

tanh
[ µ√

2
(τ − τ0)

]
, ψ(τ) = ξ f(τ)

1√
2

(
1
i

)
, (8.53)

where we have introduced a (constant) Grassmann parameter ξ.

v) Explain why ξ is called a fermionic collective coordinate.

vi) Give also the solution with non-zero ψ for the anti-instanton.

vii) Consider performing a semi-classical evaluation where one integrates over small bosonic

and fermionic fluctuations around the instanton solution. Can you understand why

the semi-classical corrections vanish?
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9 Perturbation theory

For most actions S we cannot explicitly calculate the path integral. However, we will show

that we can describe the path integral in perturbation theory in terms of an infinite series of

so-called Feynman diagrams. Consider an action S which is not only quadratic in the fields

but also includes higher-order terms. We write

S[φ] = S0[φ] + SI [φ], (9.1)

where S0[φ] denotes the part of S quadratic in φ, while SI [φ] contains the higher-order terms.

The path integral W can be written as

W =

∫
Dφ exp

{
i

~
S0[φ]

}
exp

{
i

~
SI [φ]

}
. (9.2)

In chapter 6 the following identity was derived,∫
Dφ exp

{
i

~
S0[φ] + J · φ

}
= exp

{
1
2
(J,∆J)

}
, (9.3)

where ∆ is the two-point function of the free theory, determined by S0. Clearly the two-point

function is directly proportional to the inverse of the quadratic term in the action. Note

that we use a compact notation, where

J · φ ≡
∫
dx J(x)φ(x) and (J,∆J) ≡

∫
dx dy J(x) ∆(x, y) J(y). (9.4)

If the quadratic term in the action is equal to 1
2
(φ,Aφ) then ∆ = i~A−1. The two-point

function ∆ is often called the propagator. The path-integral measure Dφ is normalized such

that
∫
Dφ exp[ i~S0] = 1.

Using (9.3) we get∫
Dφ φ1 · · ·φn exp

{
i

~
S0[φ]

}
=

∫
Dφ ∂

∂J1

· · · ∂

∂Jn
exp

{
i

~
S0[φ] + J ·φ

} ∣∣∣
J=0

=
∂

∂J1

· · · ∂

∂Jn
exp

{
1
2
(J,∆J)

} ∣∣∣
J=0

. (9.5)

To compute (9.2) we expand exp
{
i
~SI [φ]

}
as a power series in terms of the fields; (9.2) can

be written as

W = exp

{
i

~
SI [∂/∂J ]

}
exp

{
1
2
(J,∆J)

} ∣∣∣
J=0

. (9.6)

To be more specific and to clarify what is meant by SI [∂/∂J ] we discuss an example

based on the action

S =

∫
ddx

(
L0 + λφ4(x)

)
, (9.7)
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Figure 2: Diagrammatic representation of (9.11).

where L0 is the quadratic part of L. The coupling constant λ must be taken negative in

order that the potential be bounded from below. Then (9.2) becomes

W =

∫
Dφ exp

{
i

~

∫
ddx λφ4(x)

}
exp

{
i

~
S0[φ]

}
. (9.8)

The first term, exp{ i~SI}, can be expanded as a power series

exp

{
i

~
SI [φ]

}
= 1 +

iλ

~

∫
ddxφ4(x)− λ2

2~2

{∫
ddxφ4(x)

}2

+ · · · (9.9)

We focus on
∫
Dφ
∫
ddxφ4(x) exp {S0[φ]}, treating higher-order terms as perturbations.

With (9.5) this is equal to∫
ddx

(
∂

∂J(x)

)4

exp
{

1
2
(J,∆J)

}
=

∫
ddx

(
∂

∂J(x)

)4

exp

{
1
2

∫
ddy ddz J(y) ∆(y, z) J(z)

}
.

(9.10)

Using ∂J(y)
∂J(x)

= δd(x− y) one easily finds this to be equal to

∫
ddx

{
3∆2(x, x) + 6∆(x, x)

(∫
ddy∆(x, y)J(y)

)2

+

(∫
ddy∆(x, y)J(y)

)4
}

× exp

{
1
2

∫
ddz ddz′ J(z) ∆(z, z′) J(z′)

}
. (9.11)

The correspondence with Feynman diagrams is given by associating to each propagator

∆(x, y) a line with end points labelled by x and y, to each source term J(x) a cross labelled

by x and to each term originating from φn(x) an n-point vertex labelled by x (an n-point

vertex is a point where n lines join. Furthermore, one should integrate over the variables

associated with the internal lines. In terms of Feynman diagrams the expression (9.11) is

shown in Fig. 2. The coefficients of the three terms in (9.11) are combinatorial factors

which are related to the number of ways in which a diagram can be formed by connecting
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propagators and vertices. Indeed, there are three different ways to connect the four lines of

the vertex by two propagators and six different ways to connect only two lines.

Observe that we did not put the source equal to zero in (9.11). Only the first term there-

fore represents a contribution to the path integral (9.8). The subsequent terms contribute,

however, to the two- and four-point correlation function, which follow from taking further

derivatives with respect to J(x), before putting J(x) to zero.

In principle it is straightforward to work out all these expressions including the com-

binatorial factors. In practice these manipulations are summarized in a number of simple

rules, the so-called Feynman rules, which succinctly specify the correspondence between a

diagram and its mathematical expression and prescribe in simple terms how to obtain the

combinatorial factors, without necessarily having to refer to long expressions such as the

ones above. These rules can be applied to any field theory. We refer to De Wit & Smith (in

particular to chapter 2) for further details.

In (9.11) one observes that propagators appear whose space-time arguments coincide.

They are caused by the fact that in (9.10) and (9.11) we are considering correlation functions

of fields taken at the same point in space-time. We have already observed, at the end of

chapter 5 (cf. problem 5.4), that such products become singular. The same phenomenon

happens here. To see this consider the propagator for Klein-Gordon theory, which follows

directly from (6.14) by integrating over all the different harmonic oscillators described by

the field theory. Hence

∆(x, y) =
~

i(2π)d

∫
ddk

ei
~k·(~x−~y)−ik0(x0−y0)

−k 2
0 + ~k 2 +m2 − iε

. (9.12)

Obviously ∆ satisfies the equation

i

~
(
∇2 − ∂ 2

0 −m2
)
∆(x, y) = −δd(x− y). (9.13)

For x = y we find

∆(x, x) =
~

i(2π)d

∫
ddk

1

−k 2
0 + ~k 2 +m2 − iε

, (9.14)

which diverges (unless we are in d = 1 dimensions) where we are dealing with just one

harmonic oscillator. The singularity is thus caused by the fact that, in field theory, we are

dealing with an infinite number of harmonic oscillators (the singularity is called ”ultraviolet”

because it is associated with large momenta; observe that the degree of divergence grows

with the dimension).

Let us first study these singularities in a little more detail. Because of Lorentz invariance,

the propagator is not only singular for x = y, but everywhere on the light cone (thus for
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(x− y)2 = 0). Therefore we switch to the Euclidean case, where the singularity occurs only

at x = y. In d dimensions we thus consider the following differential equation,(
∂2
i −m2

)
∆(x− y) = −~ δd(x− y). (9.15)

Writing r =| ~x− ~y |, we use the ansatz

∆(x− y) = − ~
Ωd

f(mr)

rd−2
, (9.16)

where

Ωd =
2πd/2

Γ(d/2)
, (9.17)

is the surface area of a unit sphere Sd−1 embedded in d dimensions. This ansatz implies that

the dimensionless function f must satisfy the equation

f ′′(mr)− d− 3

mr
f ′(mr)− f(mr) = 0 . (r > 0) (9.18)

Equation (9.18) is a modified Bessel equation (cf. problem 9.4). Integrating (9.15) over a

ball of radius R centered at the origin, we obtain∫
BR

ddx
(
∂2
i −m2

)
∆(x) = −~ . (9.19)

Using Gauss’ law we rewrite the first term as a surface integral. In this way we find

1 + (d− 2) f(mR)−mRf ′(mR) +m2

∫ R

0

dr r f(mr) = 0. (9.20)

Upon differentiation with respect to R one finds again (9.18). Assuming that f is regular at

the origin and that d 6= 2, one readily concludes that f(0) = −(d− 2)−1.

For m = 0 we thus recover the Coulomb potential in d dimensions,

∆(x− y) =
~
Ωd

1

d− 2

1

rd−2
, (d 6= 2) (9.21)

Problem 9.1 :

For d = 1 prove that the solution of (9.15) equals

∆(x) =
~

2m
e−m|x| + C1 e

mx + C2 e
−mx , (9.22)

where C1 and C2 are arbitrary constants. Give physical arguments why one should choose

C1 = C2 = 0. Consider also the case m = 0.
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Problem 9.2 : Coulomb potential in two dimensions

For d = 2 we assume that rf(mr) is regular near the origin. Show that (9.20) then leads to

∆(x− y) =
~
2π

lnm|x− y| , (9.23)

for x − y ≈ 0, while for large values of |x − y| we have an exponential damping factor

proportional to exp(−m|x − y|). Convert to complex coordinates z = x + iy and write

the massless equation in terms of these coordinates. Show that the general solution away

from x − y = 0 can be written as the sum of two arbitrary functions f(z) and g(z̄), i.e.

a holomorphic and an antiholomorphic function. Argue that the special solution of the

inhomogenous equation

∆(x− y) =
~
2π

lnµ|x− y| , (9.24)

with µ an arbitrary constant, is indeed of that form. This is the Coulomb potential in two

dimensions. Demonstrate that the above result is consistent with the limit d→ 2 of (9.21).

Problem 9.3 : The Yukawa potential

Solve (9.18) and (9.19) at R = 0 for d = 3 and prove that the most general solution for ∆(x)

follows from

f(mr) = e−mr + A sinhmr,

where A is an arbitrary constant. For A = 0 one obtains the Yukawa potential

∆d=3 = −~
e−mr

4πr
. (9.25)

Give a systematic comparison of the short and long distance behaviour of the propagators

in various dimensions, both for m 6= 0 and m = 0.

Problem 9.4 : Green’s functions with non-zero mass

Consider the expression for ∆ in d Euclidean dimensions,

∆(~x) =
~

(2π)d

∫
ddk

ei
~k·~x

~k 2 +m2
.

Show that it can be written as

∆(~x) =
~

(2π)d

∫ ∞
0

ds

∫
ddk e−s(k

2+m2)+i~k·~x .

Perform the integral over the component of ~k parallel to ~x and over the transverse components

of ~k. Prove the following result (r = |~x|),

∆(r) =
~md−2

(4π)d/2

∫ ∞
0

ds

sd/2
exp

[
− s− (mr)2

4s

]
.
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The modified Bessel functions are defined by

Kν(x) =
xν

2ν+1

∫ ∞
0

ds

sν+1
exp

[
− s− x2

4s

]
.

Show that x−ν Kν(x) satisfies the differential equation (9.18) for appropriately chosen ν. The

asymptotic behaviour of Kν is given by

Kν(x)
x→∞∼

√
π

2x
e−x
(
1 +

4ν2 − 1

8x
+ O(x−2)

)
,

Kν(x)
x→0∼ 2ν−1 Γ(ν)

xν

(
1 + O(x)

)
.

Verify the asymptotic statements made in the text.

Problem 9.5 : Loops in connected graphs

Consider the path integral W = exp
{
i
~SI [∂/∂J ]

}
exp

{
1
2
(J,∆J)

}
|J=0. The expansion of

exp
{
i
~SI
}

into a power series leads to an expansion of W , which can be represented by

Feynman graphs. Similar expansions are obtained for the n-point Green’s functions (cor-

relation functions) by differentiating n more times with respect to the source J(xi), before

putting J to zero. Here xi are the space-time coordinates (i = 1, . . . , n) associated with the

Green’s function. The corresponding diagrams then have n external lines, i.e. propagators

that emanate from a vertex at space-time point xi, with no other propagators attached. The

other side of this propagator is then connected to the main body of the diagram. Obviously,

we call a diagram connected when it can not be divided into two parts without cutting one

of the lines.

For a field theory with translational symmetry it is convenient to perform a Fourier trans-

formation and to consider the Feynman graphs in momentum space. The Green’s functions

then depend on n momenta (subject to energy-momentum conservation). Connected dia-

grams can be classified by the number of loops L, the number of independent momentum

integrations once energy-momentum conservation has been imposed at every vertex.

Show that a connected graph with V vertices and I internal and E external lines has

I − V + 1 loops. The Feynman graphs are proportional to some power of ~, which is related

to the number of loops. To determine this power, argue that propagators are of order ~ and

vertices of order 1/~. Show that as a result connected Feynman graphs are proportional to

~I+E−V = ~L+E−1 and conclude that a loop expansion of a diagram with E external lines

corresponds to an expansion in orders of ~.

Problem 9.6 : Functional of connected graphs

In the case of a free field theory coupled to an external source we have seen that (apart from
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a normalization factor) W = exp
{

1
2
(J,∆J)

}
and that lnW = 1

2
(J,∆J) therefore consists of

only a connected diagram ×−−−−−−−×. The fact that lnW can be written as a sum of only

connected diagrams turns out to be a general property for any field theory.

To see this consider some generic theory with an interaction Lagrangian gLI . Possible

interactions with external sources may be included in it. A general graph can always be

written as the product of powers of the expressions for connected graphs. Let us denote

the contribution of a given connected graph [i] by gsi Γ[i], where si defines the number of

vertices of the graph (which equals the power of the coupling constant g). For simplicity,

assume that there is only one kind of vertex. Note that gsi Γ[i] contains all combinatorial

factors, i.e. the ones that are encountered when the full diagram is precisely equal to the

single connected graph [i]. Prove now that a general (dis)connected contribution to W that

contains ni diagrams of type [i] is equal to

Γ({ni}) =
∏
i

(gsi Γ[i])ni

ni!
,

Since W is the sum of all the above contributions for all possible graphs, it follows that

W =
∑
{ni}

Γ({ni}) =
∏
i

(
∞∑
ni=0

(gsi Γ[i])ni

ni!

)
= exp

{∑
i

gsi Γ[i]

}
.

Hence, lnW is just the sum of the connected diagrams. How do connected diagrams depend

on the total volume of the system? (Suppress external sources here). Argue that lnW rather

than W itself is the quantity that is of physcial interest.

Problem 9.7 :

To show explicitly in a nontrivial example that lnW consists of the sum of only connected

diagrams, we consider the path integral

WJ̃ =

∫
Dφ exp

{
−1

2
(φ,∆−1φ) + 1

2
(φ, J̃φ)

}
, (9.26)

where (φ, J̃φ) =
∫

ddx J̃(x)φ2(x). Show that WJ̃ is proportional to (det(∆−1 − J̃))−1/2 by

performing the Gaussian integral. Making use of equation (3.7), prove subsequently that

WJ̃ = WJ̃=0 exp
{
−1

2
Tr ln(1−∆J̃)

}
.

Now consider the Feynman diagrams corresponding to (9.26), with propagators ∆ and

vertices describing the coupling to J̃ . How many loops do these diagrams have? Write down

the connected Feynman diagram with n sources J̃ , including its combinatorial factor. Show
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that its result coincides with the above equation when extracting the n-th order term of the

logarithm. Is this consistent with the result proven in problem 7.6?

Problem 9.8 : Auxiliary fields 1

Consider a field theory with two real fields, φ en A, described by the Lagrangian

L = −1
2
(∂µφ)2 − 1

2
m2 φ2 − λφ4 − 1

2
A2 + A(µ2 + g φ2) .

1. Give the propagators and vertices. Determine the dimension of the fields and the

coupling-constant and mass parameters λ, g, µ2 and m2.

2. Calculate the self-energy diagrams in the tree approximation and give the masses

for the physical particles described in this approximation. Subsequently give the full

propagators in the tree approximation and use these in the next three questions.

3. Calculate the (three) self-energy diagrams for the field φ in the one-loop approximation.

Give the mass-shift of φ in that approximation. (Note: do not try to evaluate the

integrals.) For which value of g does the mass shift vanish?

4. Calculate the mass shift for the field A in the one-loop approximation. What do you

conclude?

5. Solve the equations of motion for A en substitute the result into the Lagrangian, which

will then depend only on φ. Show that this corresponds to integrating out the field A

in the path integral.

6. Evaluate now again the mass of the field φ in tree approximation and compare the

result with that of question 2 above.

7. Calculate again the self-energy diagrams in the one-loop approximation? Compare the

result with that obtained in question 3.

Problem 9.9 : The large-N limit

Consider the action for N real scalar fields φi (i = 1 . . . N) and one real scalar field σ, given

by

S[φi, σ] =

∫
d4x

{
−1

2

∑
i

(∂µφi)
2 − 1

2
m2
∑
i

φ2
i + σ

∑
i

φ2
i + 1

2
c σ2

}
. (9.27)

i) Give the expressions for the propagators and the vertices of the action.

ii) Calculate the selfenergy diagrams for the fields φi and σ with one closed loop (do not

evaluate the corresponding momentum integrals). Argue by considering the inverse
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(connected) 2-point correlation function (use the Dyson equation) in the one-loop ap-

proximation that these results are valid for large values of c.

iii) Calculate the one-loop diagram with a single external σ-line. Express the result into

the (divergent) momentum integral

T (m2) =

∫
d4p

i(2π)4

1

p2 +m2
. (9.28)

How does the result depend on N?

iv) We are interested in the (connected) correlation functions of the fields φi. To that

order introduce a source term Ji for every field φi. The relevante correlation functions

are then given by

〈φi1(x1) . . . φin(xn)〉 =
δ

δJi1(x1)
· · · δ

δJin(xn)
lnZ[Ji]

∣∣∣∣
Ji=0

. (9.29)

Determine the value of c such that this theory is equivalent with the one given by an

action without the field σ, but with a four-point coupling between the φi fields with

coupling strength −g/N .

Subsequently we assume that c is equal to this special value that you found in iv). Now we

consider the limit of large N with g constant for all correlation functions (9.29).

v) Consider diagrams with only external φ-lines, coupled via internal σ-line, but with-

out loops formed exclusively by φ-propagators. Show that only the disconnected tree

diagrams contribute in the limit N →∞.

vi) Add a loop of exclusively internal φ-propagators. This loop couples through σ-lines

to the rest of the diagram. Show which diagrams contribute in the limit N → ∞.

Generalize this argument to several φ-loops and prove that, in the limit N →∞, only

the two-point connected correlation functions (9.29) are nonzero. The theory therefore

behaves as a free field theory in this limit.

vii Prove, in the N → ∞ limit, that the quantum corrections only give rise to changes

in the φ-mass. Denote this modified mass by M . Show that M satisfies the following

equation,

M2 = m2 + 4g T (M2) . (9.30)

Do this by first expanding the right-hand side to g with the aid of the one-loop result.

Subsequently, show that both sides of the equation describe the same diagrams.
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viii) Give, for large N , the leading expression for the full propagator belonging to the field

σ. This expression contains again a divergent integral, which depends on M2. In this

approximation, can you say something about whether σ can correspond to a possible

physical particle?

10 More on Feynman diagrams

Here we follow sections 2.4, 2.5 and 2.6 of De Wit & Smith. We also consider part of the

problems listed at the end of chapter 2.

Problem 10.1 : Auxiliary fields 2

Consider the following Lagrangian of real fields A and F in four spacetime dimensions,

L = L0 + Lm + Lg , (10.1)

where

L0 = −1
2
∂µA ∂µA+ 1

2
F 2 , Lm = mFA , Lg = gFA2 . (10.2)

i) Show that, classically, this theory is equivalent to a self-interacting theory of one real

scalar.

ii) Due to the A-F mixing introduced in Lm the quadratic part of the Lagrangian L
is not diagonal in field space. Therefore, the propagators form a 2 × 2-matrix with

off-diagonal entries. Show that the propagators for this model read

∆(p2) =

(
∆AA(p2) ∆AF (p2)

∆FA(p2) ∆FF (p2)

)
=

1

i(2π)4

1

p2 +m2

(
1 −m
−m −p2

)
. (10.3)

iii) Write down the Feynman rules corresponding to L. Represent the AA-propagator by

a straight line, the FF -propagator by a wiggly line. The propagators ∆AF and ∆FA

are represented by lines which are straight at the end associated with the A-field and

turn wiggly at the end associated with the F -field.

We note that the Lagrangian has special properties, as is reflected for example in the fact

that
∂

∂m
Lm =

1

2g

∂

∂A
Lg . (10.4)

Such properties lead to intricate relations among the diagrams generated by L. We will

derive such a relation in the following. We introduce sources for the fields A and F and the
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path-integral representation for the generating functional

Z[J ] =

∫
DADF exp

[
i

∫
d4yL+

∫
d4y(JAA+ JFF )

]
. (10.5)

iv) Derive the relation

∂

∂m
Z[J ] +

im

2g

∫
d4y

δZ[J ]

δJF (y)
+

1

2g
Z[J ]

∫
d4yJA(y) = 0 . (10.6)

(Hint: use that the path integral over a (functional) derivative with respect to a field

vanishes, ∫
Dφ δ

δφ(x)
G[φ] = 0 , (10.7)

as well as ∫
DφH[φ]

∫
dx

∂2

∂x2
φ(x) = 0 , (10.8)

for functionals G[φ] and H[φ].)

v) Rewrite the identity (10.6) in terms of the generating functional of connected correlation

functions W [J ] = lnZ[J ].

From above identities one can now deduce many non-trivial relations between different

graphs. To pick out the specific graphs contributing to a correlation function one func-

tionally differentiates with respect to the sources and then sets the sources to zero. Let us

define

DAA(x1, x2) =
δ

δJA(x1)

δ

δJA(x2)
W [JA, JF ]

∣∣∣∣
JA=0=JF

,

ΓFAA(x1, x2, x3) =
δ

δJF (x1)

δ

δJA(x2)

δ

δJA(x3)
W [JA, JF ]

∣∣∣∣
JA=0=JF

. (10.9)

vi) What do DAA(x1, x2) and ΓFAA(x1, x2, x3) represent? Draw the tree diagrams that

contribute to these two functions. (Hint: Don’t forget that there is a off-diagonal piece

in the propagator which induces a mixing between the fields.)

We now turn to a specific example of the sort of relations that hold between different con-

nected correlation functions,

∂

∂m
DAA(x1, x2) = − im

2g

∫
d4y ΓFAA(y, x1, x2) . (10.10)

vii) Prove the relation (10.10) by making use of the result found in v). Why does the

relation (10.10) hold to all orders in perturbation theory?
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We note that upon Fourier transformation the quantities defined in (10.9) read∫
d4x1 d4x2 eip1·x1+ip2·x2 DAA(x1, x2) =

(2π)4 δ(4)(p1 + p2)DAA(p1, p2) .∫
d4x1 d4x2 d4x3 eip1·x1+ip2·x2+ip3·x3 ΓFAA(x1, x2, x3) =

(2π)4 δ(4)(p1 + p2 + p3) ΓFAA(p1, p2, p3) . (10.11)

The δ-functions arise due to translational invariance.

viii) Prove that the relation (10.10) in momentum space is given by

∂

∂m
DAA(p,−p) = − im

2g
ΓFAA(0, p,−p) . (10.12)

ix) Verify the relation (10.12) explicitely at tree-level approximation using the set of Feyn-

man rules deduced in iii). You may ignore factors of i(2π)4.

Problem 10.2 : Field redefinitions

Consider a real scalar field φ coupled to an external field H in four spacetime dimensions.

The Lagrangian is given by

L1 = −1
2
(∂φ)2 − 1

2
m2φ2 − g φ[2(∂φ)2 +m2φ2]− g2φ2[2(∂φ)2 + 1

2
m2φ2] +Hφ . (10.13)

In this exercise we will restrict ourselves to tree diagrams.

i) Write down the Feynman rules for this theory.

ii) Calculate the connected tree diagram(s) that involve two H-fields (without external φ

lines). Call the resulting expression D(p1, p2), where p1 and p2 denote the incoming

momenta associated with the H-fields.

iii) Calculate the connected tree diagram(s) involving three H-fields (without external φ

lines). Call the resulting expression T (p1, p2, p3), where p1, p2 and p3 are the incoming

momenta associated with the H-fields.

We want to compare this result to the result one obtains in a theory where the H-field has

an extra coupling to φ2,

L2 = L1 + g φ2H . (10.14)

Due to the additional interaction term in L2 there is a new vertex.
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iv) Argue that there are no contributions from the new vertex to the connected tree

diagrams D(p1, p2) calculated in ii).

v) There are now new connected tree diagrams involving three H-fields due to the new

φ2H vertex. Show that these new diagram(s) cancel against T (p1, p2, p3) evaluated in

iii).

vi) Explain the results obtained under iv) and v) by arguing that L2 is related to a free

field theory by a field-redefinition in the latter of the form φ→ a φ+ b φ2. Determine

the values of a and b.

Hint: consider the path integral representation

W [H] =

∫
Dφ e

i
~

R
[L0 +Hφ], (10.15)

where

L0 = −1
2
(∂φ)2 − 1

2
m2φ2 . (10.16)

You may ignore any subtleties involving a Jacobian that might arise when performing

a field-redefinition in this expression.

vii) For the theory defined by L1, draw the connected tree-diagrams that involve four

H-fields.

viii) Argue now (without performing a calculation) that these diagrams will exactly can-

cel against contributions coming from the extra tree-diagrams that involve the φ2H

vertices in L2. Draw these diagrams.

We now consider two interacting field theories, L3(φ) and L4(φ), that are related by a local

field redefinition of the form φ→ a φ+b φ2 +c φ3 + · · ·. To calculate the correlation functions

of the fields φ we can add an external source J , coupled to φ, to both L3 and L4,

L3 → L3 + Jφ , (10.17)

L4 → L4 + Jφ , (10.18)

and differentiate with respect to J in the usual fashion (setting J to zero afterwards).

ix) Argue that the 4-point functions corresponding to L3 and L4 differ by terms that

correspond to diagrams that involve extra source interactions φnJ with n > 1, where

J is the source used to generate the correlation functions. Indicate the three kinds

of diagrams that involve these vertices and that contribute to the 4-point function.

(recall that we only consider tree diagrams).
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x) Suppose now that we put the diagrams of the 4-point function “on the mass shell”.

By this we mean that we multiply each external line with p 2
i + m2, where pi is the

momentum associated with that line. After thus having removed the propagator poles

associated with the external lines, we take p 2
i → −m2. Show that the 4-point functions

corresponding to L3 and L4 are now equal, i.e. the extra diagrams based on the φnJ

vertices do not contribute here.

xi) Can you describe in words what you think is the significance of the result proven in

x). Furthermore, argue that the Jacobian that we suppressed in vi) when performing

a field redefinition in (10.15) may be regarded as a closed-loop effect.

Problem 10.3 : Scalar field on a circle

Consider the action of a real scalar field in two spacetime dimensions,

S =

∫
dx dt

(
− 1

2
(∂µφ)2 − 1

2
m2φ2 − λφ4

)
. (10.19)

Assume that the spatial component x parametrizes a circle of length L = 2πR, and decom-

pose the scalar field in terms of a Fourier sum with coefficients φn(t).

i) Express the action in terms of these Fourier modes and show that you obtain a

quantum-mechanical model of an infinite tower of harmonic oscillators φn(t), where

n = 0,±1,±2, . . ., with frequencies (masses),

M2
n = m2 +

n2

R2
. (10.20)

Normalize the φn such that kinetic energy reads 1
2
(∂tφ0)

2 +
∑

n>0 |∂tφn|2.

ii) Write down the propagators and vertices in momentum space for this quantum-mechanical

model.

iii) Draw the Feynman diagram(s) that contribute to the self-energy of φ0 in the one-

loop approximation. In the same approximation, compute the full propagator and the

correction to the φ0-mass. Use the fact that the propagator,

∆(x− y) =
1

i(2π)d

∫
ddk

eikµ(x−y)µ

k2 +M2 − iε
, (10.21)

for d = 1, is given by ∆(x− y) = 1
2M

e−iM |x−y|.

1. Present the separate contributions to the φ0-mass from the φ0-propagator and from the

φn-propagators (for fixed non-zero |n|). Consider now the limits R → 0 and R → ∞,

assuming that λ′ = λ/L is kept constant.
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iv) Add the various contributions and discuss the result for the φ0-mass in the two limits.

Problem 10.4 : Pion annihilation into charged kaons

We consider the annihilation of charged pions into charged kaons, mediated through the

exchange of a virtual photon.

i) We start by considering the Lagrangian for a complex scalar field φ interacting with a

photon field Aµ,

L = −1
4
(∂µAν − ∂νAµ)

2 − ∂µφ
∗∂µφ−m2φ∗φ

−ieAµ[φ
∗(∂µφ)− (∂µφ

∗)φ]− e2A2
µφ
∗φ . (10.22)

This Lagrangian will be used to describe the interaction of electrically charged pions

π± and of electrically charged kaons K± with photons. Pions and kaons are spinless

elementary particles with masses of about 140 and 494 MeV/c2 and lifetimes of the

order of 10−8 seconds. Hence the scalar field φ can be associated with either π± or K±

particles with corresponding masses mπ and mK. Demonstrate that the Lagrangian

(10.22) is invariant under the combined gauge transformations.

Aµ(x) → Aµ(x) + ∂µξ(x) , φ(x) → eieξ(x)φ(x) . (10.23)

ii) We consider the process of pion annihilation, in which charged pions annihilate into a

virtual photon which subsequently decays into two charged kaons: π++π− → K++K−.

We describe this process in tree approximation by the exchange of a virtual photon.

Write down the interaction vertices of the photon with an incoming π± pair with four-

momenta p+ and p−, and of the photon with an outgoing K± pair with momenta k+

and k−. Give the constraints on these momenta when the pions and kaons are on their

respective mass shells. Draw the relevant Feynman diagram for this process indicating

all the momenta of the external and internal lines. Indicate the direction of the charge

by arrows on the lines.

iii) Consider the definition of the photon propagator and argue that it does not exist on the

basis of the Lagrangian (10.22). To cure this problem introduce a so-called gauge-fixing

term in the Lagrangian,

Lgauge−fixing = −1
2
(λ ∂µAµ)

2 , (10.24)

with λ an arbitrary parameter. Calculate now the photon propagator.
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iv) Use the previous results to write down the ampitude for the process π++π− → K++K−,

with the kaon and pion momenta on their respective mass shells. Show that the result

is independent of λ. Do you understand this independence?

v) Show that the invariant amplitude can be written in simple form,

M = e2
u− t

s
, (10.25)

where s, t and u are the so-called Mandelstam variables,

s = −(p+ + p−)2 , t = −(p+ − k+)2 , u = −(p+ − k−)2 ,

Comment: This particular process is not very relevant experimentally. But it is a good

prototype for understanding the similar process of electron-positron annihilation into heavy

lepton or quark pairs, which is very important experimentally.

Problem 10.5 : Vector boson interactions and masses

Consider the following Lagrangian of a massive vector field in four space-time dimensions

coupled to some unspecified fields generically denoted by φ with coupling constant g,

L = −1
4
(∂µVν − ∂νVµ)

2 − 1
2
m2 Vµ

2 + Lint(g Vµ, φ) , (10.26)

where Lint describes the interactions.

i) Derive the propagator ∆µν(p) for the vector boson field in momentum space. Consider

the poles at p2 +m2 = 0, and deduce from them how many physical states the vector

boson has and how its physical polarizations (components) can be characterized.

ii) Due to the (unspecified) interactions there are irreducible self-energy diagrams con-

tributing to the propagator. Their one-loop contribution is proportional to g2 and

in this case constitutes a 4 × 4 matrix, which we denote by g2Πµν(p).
11 Argue that

Lorentz invariance leads to the following decomposition,

Πµν(p
2) =

(
ηµν −

pµpν
p2

)
Π1(p

2) +
pµpν
p2

Π2(p
2) . (10.27)

iii) According to the Dyson equation (which is now a matrix equation) one must consider

the inverse lowest-order propagator and include the self-energy graphs to obtain the full

inverse propagator. The mass of the vector boson states is then given by the values of

11Conventionally self-energy diagrams for vector fields are denoted by Πµν , rather than by Σ.
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−p2 for which the full inverse propagator has zero eigenvalues. By Lorentz invariance

the eigenvectors are characterized by polarizations orthogonal to the four-momentum

pµ (there are three of these) and by polarizations parallel to pµ. Show that the mass

M associated with the orthogonal polarizations satisfies the equation,

M2 = m2 − g2

i(2π)4
Π1(−M2) . (10.28)

Give the expression for M2 in leading order of perturbation theory.

iv) Write down the analogous equation for the polarization parallel to pµ. What can you

conclude about the physical mass associated with this polarization in perturbation

theory?

Problem 10.6 : Infinite corrections in a non-linear sigma model

In problem 2.1 we have established that for a Lagrangian with a “velocity-dependent poten-

tial” described by L = f(q) p2/(2m), the action in the definition of the path integral should

be modified by a correction term according to

S[q(t)] −→ S[q(t)]− 1
2
i~
∫

dt δ(0) log[f(q)] , (10.29)

where δ(0) is the delta function δ(t) taken at t = 0. Obviously this answer is infinite and

thus ill-defined. Here we consider this correction term in field theory.

i) We start with the action for a single free, massless, scalar field φ(x) in d space-time

dimensions. The action reads

S[φ(x)] =

∫
ddx

[
− 1

2
(∂µφ)2

]
. (10.30)

Let us now perform a field redefinition and write φ as φ(ϕ), where φ(x) is a local

function of ϕ(x), i.e. φ(x) depends only on the field ϕ(x) defined at the same space-

time point. The action then changes into

S[ϕ(x)] =

∫
ddx

[
− 1

2
g(ϕ) (∂µϕ)2

]
, g(ϕ) =

[
∂φ(x)

∂ϕ(x)

]2

. (10.31)

This action now seems to describe an interacting field theory. However, in the func-

tional integral, one must now take into account the Jacobian associated with the map

φ→ ϕ. Show that this Jacobian leads to the following term,

det

∣∣∣∣∂φ(x)

∂ϕ(y)

∣∣∣∣ = exp

[∫
ddx δd(0) log

(∂φ(x)

∂ϕ(x)

)]
, (10.32)
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which can be included in the action. Here the integral arises because the Jacobian

involves fields at all the space-time points. To derive this result you may, for instance,

discretize space-time.

ii) Demonstrate now that (10.32) introduces a correction term in the action which is

completely in accord with the result (10.29), i.e.,

S[ϕ(x)] −→ S[ϕ(x)]− 1
2
i~
∫

ddx δd(0) log[g(ϕ)] . (10.33)

From now on we will assume that every Lagrangian of this type (also when generalized

to several scalar fields) will require this correction.

iii) We now return to the action (10.31) and calculate the one-loop diagram which con-

tains precisely one propagator and one vertex, where the closed loop originates from

connecting the two fields that carry a space-time derivative. For convenience, you may

consider a specific example where g(ϕ) = 1 + λϕ2, so that the relevant Lagrangian is

given by

L = −1
2
(∂µϕ)2 − 1

2
λϕ2 (∂µϕ)2 . (10.34)

Draw the diagram.

iv) Determine now the expression corresponding to this diagram. Obviously the answer

contains the second derivative of the propagator function,

∂2∆(x, y)

∂xµ ∂yµ
=

~
i
δd(x− y) . (10.35)

which follows from the defining differential equation for the propagator of a massless

scalar field. Demonstrate that the result for this diagram contains a delta function

δd(0) and note how it depends on ~.

v) Compare the result above to the universal correction (10.33) by expanding the loga-

rithm to first order.

vi) Can you explain the result?

Problem 10.7 : The effective potential

Consider a Lagrangian in arbitrary space-time dimension d, of a scalar field φ(x) coupled to

an external source J(x). The Lagrangian reads,

L = −1
2
(∂µφ)2 − 1

2
m2φ2 + g (∂µφ)2 J , (10.36)
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with g some coupling constant. We will consider all one-loop Feynman diagrams with no

external φ-lines in momentum space. The external J-lines are assumed to carry zero momen-

tum. That means that these diagrams can be encoded in a so-called “effective Lagrangian”

of the form

Leff(J) =
∞∑
n=1

cn g
n [J(x)]n , (10.37)

which depends on J(x) but not on its derivatives. For this reason we denote minus the

expression above as the “effective potential”. The coefficients cn are such that the vertices

corresponding to (10.37) give the same result as the result of the loop diagrams based on

(10.36). Our goal will be to calculate the coefficients cn for general n.

i) Prove that the diagram with one external J-line is equal to

D1 = g

∫
ddq

q2

q2 +m2
. (10.38)

Explain why there are no numerical factors and no powers of ~. Argue that c1 will be

proportional to the integral D1 and determine the precise (non-trivial) proportionality

factor by comparing with the tree diagram that one obtains from (10.37) with one

external J-line .

ii) Subsequently we consider the one-loop diagram(s) with n external J-lines. When n > 1

the external J-lines may carry finite momentum, but, as explained above, we only

evaluate the diagrams for zero external momenta! Obviously these are proportional to

Dn ∝ gn
∫

ddq

[
q2

q2 +m2

]n
. (10.39)

Derive the precise proportionality factor. (It may be advisable to check your result

first for n = 2).

iii) Just as before, consider now the tree diagram with n external zero-momentum J-lines

that follows from (10.37) and compare the result to the expression obtained for the

one-loop diagram above. Derive the general expression for the coefficients cn in terms

of the integral in (10.39). Observe that this expression depends non-trivially on n.

iv) Consider the limit m2 → 0 and evaluate (formally!) all the integrals for arbitrary n.

v) Can you now sum the series and obtain a simple expression for (10.37)? Can you

explain the answer and clarify the various factors in the result?

vi) Suppose that J(x) is not an independent external source, but instead a local expression

of the fields φ (meaning that it depends on the field φ and not on its derivatives). Argue

that the effective potential remains as before, where the source J(x) is simply replaced

by J(φ(x)).

91



11 Fermionic harmonic oscillator states

Consider a simple extension of the harmonic oscillator, described by the following Hamilto-

nian

H =

 p2

2m + 1
2
mω2 q2 − 1

2
~ω 0

0
p2

2m + 1
2
mω2 q2 + 1

2
~ω

 . (11.1)

Note that this Hamiltonian does not describe two harmonic oscillators, nor a harmonic

oscillator in two dimensions. From the harmonic oscillator spectrum it is clear that we have

a groundstate of vanishing energy, while each of the excited states is doubly degenerate and

has energy equal to ~ω, 2~ω, 3~ω, . . .. The corresponding wave functions have therefore two

components. The degeneracy is indicative of a symmetry (called supersymmetry), which we

shall discuss elsewhere. Now we concentrate on the Hamiltonian itself.

First we introduce the usual creation and annihilation operators a and a† in terms of p

and q. To describe the extension to the two-component system we introduce two further

operators,

b =

(
0 1

0 0

)
, b† =

(
0 0

1 0

)
. (11.2)

It is our intention to interpret these operators again as creation and annihilation operators.

Before doing so, we note the following properties,

b2 = b†2 = 0 , {b, b†} ≡ b b† + b† b = 1 . (11.3)

In terms of these operators the Hamiltonian takes a rather symmetric form,

H = ~ω(a† a+ b† b) , (11.4)

(the operators a and a†, which saisfy the usual commutation relation [a, a†] = 1, act uniformly

on both components of the wave function, so that they are proportional to the two-by-two

identity matrix). The interpretation of creation/annihilation operators is based on

[H, a] = −~ω a , [H, b] = −~ω b , (11.5)

so that, when acting on an eigenstate of the Hamiltonian, a and b lower the energy by ~ω,

while their hermitean conjugates raise the energy by this amount. The Hamiltonian can also

be written as

H =
p2

2m
+ 1

2
mω2 q2 + 1

2
mω [ψ†, ψ] , (11.6)

where ψ ≡
√

~
m
b.
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Eventually we want to extend this system to a field theory. As we discussed earlier, a

(free) field theory can be regarded as a theory describing an infinite number of harmonic

oscillators. With this in mind, we generalize the above system to an arbitrary number N of

harmonic oscillators, each extended to a 2× 2 matrix. In that case we have creation and an-

nihilation operators ai, bi, a
†
i and b†i , where i = 1, 2, . . . , N , satisfying the (anti)commutation

relations

[ai, aj] = [a†i , a
†
j] = 0 , [ai, a

†
j] = δij , (11.7)

{bi, bj} = {b†i , b
†
j} = 0 , {bi, b†j} = δij . (11.8)

The Hamiltonian

H =
N∑
i=1

{ p2
i

2m
+ 1

2
mω2 q2

i + 1
2
mω [ψ†i , ψi]

}
(11.9)

describes N harmonic oscillators with a 2N × 2N matrix extension. The latter because

N operators ψi with the required anticommutation relations can only be realized in a 2N -

dimensional space. The excited states in this theory exhibit again a degeneracy. However,

this degeneracy is due to our choice of parameters and the resulting supersymmetry can

be broken rather easily, for instance by changing the factor in front of the ψ†ψ term. For

the purpose of this chapter supersymmetry is not important, but it makes the discussion

somewhat more elegant.

In view of the anticommutation relations, the states produced by applying the creation

operators b†i are antisymmetric under exchange: defining states |i, j〉 ≡ b†i b
†
j|0〉, where |0〉 is

some state that is not annihilated be the creation operators, we have |i, j〉 = −|j, i〉. This

implies that the states associated with the operators b†i are to be interpreted as fermions.

When extending the above models to a field theory, they should be viewed in the context of

second quantization, as explained in chapter 3. The conclusion is that such a field-theoretic

extension will describe particles with Fermi-Dirac statistics.

For the moment we postpone the extension to a relativistic field theory and first discuss

how to deal with systems with anticommuting coordinates and momenta, with the aim

of eventually setting up a path integral formulation for fermions. We will therefore first

develop the classical Lagrangian and Hamiltonian formulations in terms of coordinates that

are anticommuting. Naively, it is clear that the following Lagrangian would lead to the

Hamiltonian (9.6),

L = 1
2
m q̇2 − 1

2
mω2 q2 + imψ† ψ̇ −mωψ† ψ . (11.10)

In the Lagrangian the quantities ψ and ψ† are taken as anticommuting and we ignored

a possible constant term. When passing to the Hamiltonian the coordinate ψ† will play
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the role of the canonical momentum and the time derivative of ψ cancels. There exists an

appropriate canonical bracket, which after quantization, leads to operators ψ and ψ† whose

anticommutator is proportional to the identity. Before exhibiting this in detail we introduce

so-called anticommuting c-numbers.

Problem 11.1 :

Write down the two-component wave functions (in the coordinate representation) for the

three lowest-energy states corresponding to the Hamiltonian (11.1).

Problem 11.2 :

Consider the case N = 2, where we have four-component wave functions. Construct the

four-component space by choosing |0, 0〉 as the state that is annihilated by both b1 and b2.

Argue that such a state can always be found. By acting on it with b†1 and b†2 construct the

four remaining states |1, 0〉, |0, 1〉 and |1, 1〉. Write the operators bi and b†i as four-by-four

matrices and write down the Hamiltonian (11.6) in matrix form. Write down the wave

function for the groundstate and the first excited states.

Problem 11.3 : Extended supersymmetry

It is possible to construct operators that give transitions between the degenerate states.

Show that the so-called supercharges,

Q1 =
√

~ω(a† b+ a b†) ,

Q2 = i
√

~ω(a† b− a b†) ,

commute with the Hamiltonian and must therefore be such operators. Somewhat unexpect-

edly, it thus turns out that we are dealing with two independent supersymmetries. Show

that both supercharges annihilate the groundstate. Write the bosonic and fermionic states in

terms of products of creation operators acting on the groundstate, and show that Qi changes

a bosonic state into a fermionic one, and vice versa. Finally show that

{Qi, Qj} = 2H δij . (11.11)

Prove from this result that zero-energy states must be annihilated by Qi. Can you construct

a conserved bosonic operator other than the Hamiltonian? Can you give an interpretation

of this operator?

Problem 11.4 :

Generalize the various results of chapter 1 to argue that the path integral for the Hamiltonian
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(11.1), which now takes the form of a two-by-two matrix, takes the form

W (q2, t2; q1, t1) =

√
mω

2πi~ sinω(t2 − t1)

× exp

{
imω

2~ sinω(t2 − t1)

[
(q2

1 + q2
2) cosω(t2 − t1)− 2q1q2

]}
×

(
e

1
2
iω(t2−t1)

0 e−
1
2
iω(t2−t1)

)
. (11.12)

Evaluate now the partition function for this model at finite temperature and show that it is

given by Z
(+)
β /Z

(−)
β , where Z

(±)
β was defined in chapter 7. Reread the text following (7.29).

What is your conclusion?

12 Anticommuting c-numbers

In this chapter we briefly introduce the mathematical concepts that form the basis for the

so-called anticommuting c-numbers and exhibit how to perform practical calculations with

them.

The Grassmann Algebra :

Anticommuting c-numbers can be discussed within the context of Grassman algebras. We

start by considering anticommuting c-numbers θi satisfying

θi θj = −θj θi . (12.1)

The numbers θi are taken to be real, i.e. θ†i = θi. Under conjugation the order of anticom-

muting c-numbers is reversed. For instance, we have (θiθj)
† = θjθi = −θiθj.

On the basis of n such anticommuting objects one defines an n-dimensional Grassmann

algebra with n generators θ1, . . . , θn. Each element P (θ) of the algebra can be decomposed

in the following way

P (θ) = p(0) + θi p
(1)
i +

∑
i>j

θiθj p
(2)
ij + · · · + θnθn−1 · · · θ1 p

(n) , (12.2)

where summation over repeated indices is implied. The total number of independent terms

in (12.2) is at most 2n. A monomial θi1 . . . θip is called a monomial of degree p. Monomials

of odd (even) degree are anticommuting (commuting) objects. The square of a monomial

vanishes unless its degree is zero, in which case we have an ordinary c-number. Monomials

of degree higher than the dimension of the Grassmann algebra vanish identically. It is not
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difficult to define differentiation and integration on the Grassmann algebra. As we shall see

below, the application of functional methods to fermions does not require major modification.

Differentiation on the Grassmann algebra ;

We distinguish two different derivatives on the Grassmann algebra, called right and left

derivatives. The derivative of a general element of the algebra is obtained by differentiating

its monomials and resumming the result. To calculate the right (left) derivative with respect

to θi we must, in every monomial, permute θi to the right (left) and then drop it. If ε[i] is

the sign of the permutation needed to bring θi to the right (left), and ε[i] = 0 when θi does

not occur in the monomial, then the right (left) derivative of a monomial can be written in

the following way,

∂

∂θik

(
θi1 · · · θik−1

θikθik−1
· · · θim

)
= ε[ik]

(
θi1 . . . θik−1

θik+1
. . . θim

)
. (12.3)

Unless specified otherwise, we shall always use left derivatives.

Although the expression P (θ) for an element of the Grassmann algebra is not a function

of θ in the strict mathematical sense, as it does not assign a number to a number, most of the

properties of left and right derivatives of P (θ) are similar to the properties of derivatives of

ordinary functions. For example if δθi denotes an additional “infinitesimal” anticommuting

c-number we can symbolically write for (12.3)

∂

∂θ
P (θ) = lim

δθi→0

1

δθi

{
P (θ1, . . . , θi + δθi, . . . θn)− P (θ1, . . . , θi. . . . θn)

}
. (12.4)

The chain rule holds in the same form as for commuting numbers

∂

∂θi
P (α(θ)) =

∂

∂θi
αj(θ)

∂

∂αj
P (α), (12.5)

where P is an element of a Grassmann algebra on the basis of the α’s, and α is an element

of a Grassmann algebra with the θ’s as its generators. However, the order in which one

writes the terms in (12.5) is important for anticommuting parameters; for right derivatives,

the order of the two terms is interchanged! Also Leibniz’ rule has a direct analogue. For

instance, for left derivatives we have

∂

∂θ

(
f(θ) g(θ)

)
=

(
∂

∂θ
f(θ)

)
g(θ)± f(θ)

(
∂

∂θ
g(θ)

)
, (12.6)

where the plus (minus) sign is valid for an even (odd) “function”f(θ).

Integration over the Grassmann algebra :

We construct the analogue of the indefinite one-dimensional integral (for a suitable class of
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functions) ∫ ∞
−∞

dx f(x)

for the case of anticommuting c-numbers, which we denote by∫
dθ P (θ).

As a starting point for its construction we require that the following property of the integral

over commuting parameters, ∫ ∞
−∞

dx f(x) =

∫ ∞
−∞

dx f(x+ a) , (12.7)

which is valid for any finite a, holds also for an integral over anticommuting parameters.

Also we assume that the standard rules for taking linear combinations of integrals remain

valid. We now consider a one-dimensional integral. A general element of the one-dimensional

Grassmann algebra is decomposed as

P (θ) = a+ θ b , (12.8)

with a and b arbitrary, and θ anticommuting. The expression analogous to (12.7) for anti-

commuting numbers is ∫
dθ P (θ) =

∫
dθ P (θ + α), (12.9)

for any anticommuting α. Substituting (12.8) into (12.9), we find that the latter requires∫
dθ α b = 0 , (12.10)

for any α and b. Hence we must define∫
dθ [any element not depending on θ] = 0. (12.11)

Consequently we are left with the integral over θ, which we simply normalize to unity,∫
dθ θ ≡ 1 . (12.12)

Multiple integrals can be understood as iterated integrals, leading to the anticommuting

symbols12 dθi. Integration over anticommuting numbers turns out to be equivalent to taking

the left derivative ∫
dθ P (θ) =

∂

∂θ
P (θ) . (12.13)

12It is possible to set up differential forms with both commuting and anticommuting coordinates. In that
case the one-forms dx are anticommuting and the one-forms dθ are commuting.
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Also the rules of partial integration apply for integrals over anticommuting parameters. In

analogy with ∫ ∞
−∞

dx
∂

∂x
f(x) = 0 ,

one can easily show that ∫
dθ

∂

∂θ
P (θ) = 0 . (12.14)

Gaussian integrals and the superdeterminant :

In the previous discussions on path integrals, generalized Gaussian integrals played an impor-

tant role. We now discuss their evaluation for anticommuting variables. The generalization

of a Gaussian integral over complex commuting variables,∫ (∏
i

dz̄i dzi
2π i

)
exp(−(z̄, Az)) = (detA)−1 , (12.15)

is easy to find.13 Using the integration rule for anticommuting quantities one derives straight-

forwardly ∫ (∏
i

dθi dθ̄i

)
exp(θ, Aθ) = detA . (12.16)

Note that A is required to be a positive-definite hermitean matrix in order that the integral

(12.15) converges, whereas (12.16) is valid for arbitrary A.

It is also possible to define Gaussian integrals over real variables. We give the result

without further derivation∫ (∏
i

dxi√
2π

)
exp (− 1

2
(x,Ax)) =

1√
detA

, (12.17)

∫ (∏
i

dθi

)
exp (1

2
(θ, Aθ)) = ±

√
detA . (12.18)

In this case the matrix A should be symmetric and positive definite in (12.17) and anti-

symmetric in (12.18). The quantity (detA)1/2, with A antisymmetric, is sometimes called

a Pfaffian in the mathematical literature. One can show that the Pfaffian is a monomial in

each of the eigenvalues of the matrix, a property which is obvious from (12.18).

Gaussian integrals can be used to define the determinant of a matrix acting in superspace,

the space of commuting and anticommuting coordinates. Vectors in this space are decom-

posed in terms of commuting and anticommuting variables, x and θ, respectively. Linear

13Use z = x + iy and dz̄ dz/2i = dxdy.
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transformations in superspace can be written as matrices acting on these coordinates,(
x

θ

)
−→

(
x′

θ′

)
=

(
A D

C B

)(
x

θ

)
, (12.19)

where the submatrices A and B have commuting, and C and D have anticommuting ele-

ments. One can now construct the so-called superdeterminant of a superspace matrix M

M =

(
A D

C B

)
(12.20)

by calculating a generalized Gaussian integral over commuting and anticommuting variables,

1

detM
=

∫
dz̄ dz

2πi
dθ̄ dθ exp(−(z̄, Az)− (z̄, Dθ)− (θ̄, Cz)− (θ̄, Bθ)) . (12.21)

This integral can be evaluated formally by making a shift in integration variables,

θ −→ θ −B−1Cz ,

θ̄ −→ θ̄ − z̄DB−1 .

Subsequently, using (12.15) and (12.16) leads to the following result for the superdeterminant

detM =
det(A−DB−1C)

detB
=

detA

det(B − CA−1D)
. (12.22)

The second form can be obtained by performing a similar shift, but now in the integration

variables z and z̄. Both results for the superdeterminant become plausible when we write

M as a product of two matrices,

M =

(
A 0

C 1

)(
1 A−1D

0 B − CA−1D

)
, (12.23)

or, alternatively,

M =

(
1 D

0 B

)(
A−DB−1C 0

B−1C 1

)
. (12.24)

Precisely as for the conventional determinant one has a product rule for the superdeter-

minant

det(M1M2) = detM1 detM2 . (12.25)

To show this we first introduce the notion of the supertrace,

TrM ≡ TrA− TrB , (12.26)
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where the trace operation on the right-hand side is the conventional one applied to the

submatrices A and B. Owing to the minus sign in front of the submatrix B, which acts

exclusively in the anticommuting sector, the supertrace satisfies the characteristic cyclicity

property of a trace,

Tr(M1M2) = Tr(M2M1) , (12.27)

so that the trace of the commutator of two matrices vanishes. This allows one to straight-

forwardly derive (see problem 12.2)

Tr ln(M1M2) = Tr lnM1 + Tr lnM2 . (12.28)

We now writeM as the product of two triangular matrices according to (12.23) or (12.24),

and use (12.28) to construct Tr lnM . This then shows that

Tr lnM = ln detM , (12.29)

with detM as defined by (12.22). This then suffices to establish the product rule (12.25)

by means of (12.28). Here we note that the exponent and the logarithm of a matrix in

superspace are defined by series expansions, precisely as for ordinary matrices.

An important aspect of determinants is that they occur in the definition of the Jaco-

bian of a transformation. A similar situation exists for superdeterminants. Indeed for a

transformation in superspace

(x, θ) → (x(x̂, θ̂), θ(x̂, θ̂)) , (12.30)

we may write ∫
dx dθ P (x, θ) =

∫
dx̂ dθ̂ J(x(x̂, θ̂))P (x(x̂, θ̂), θ(x̂, θ̂)) , (12.31)

where

J(x(x̂, θ), θ(x̂, θ̂)) = ± det

 ∂x
∂x̂

∂x

∂θ̂

∂θ
∂x̂

∂θ

∂θ̂

 . (12.32)

In (12.31) the fermionic derivatives are right derivatives. The correctness of (12.31) is entirely

obvious for linear transformations. For instance, we may redefine the integration variables

(x, θ) of the Gaussian integral (12.21) according to a linear transformation (12.19) and recover

(12.32) by using the product rule. But (12.32) holds for general nonsingular transformation

as well.

Problem 12.1 :

Prove that the determinant of an n×n antisymmetric matrix vanishes when n is odd. Derive

the same result on the basis of (12.18).
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Problem 12.2 :

Prove the cyclicity property (12.27). Use the Campbell-Baker-Hausdorff formula for ordinary

matrices

(expA)(expB) = exp(A+B + repeated commutators of A and B),

to show the validity of (12.28).

Problem 12.3 :

An intermediate step in the proof of (12.32) is to show that it holds for an integral over a

two-dimensional Grassmann algebra. Parametrize the transformation θi(θ̂1, θ̂2) according to

(12.2), and demonstrate the validity of (12.32) by explicit calculation. Show also the validity

of (12.32) for an integral over one commuting and one anticommuting parameter.

13 Phase space with commuting and anticommuting

coordinates and quantization

Consider a system with Lagrangian L depending on a commuting coordinate q and two

anticommuting coordinates, c and d,

L(q, q̇, c, ċ, d) = 1
2
mq̇2 + idċ− V (d, c, q) . (13.1)

Naively one defines the action for given ‘trajectories’ q(t), d(t) and c(t) as the time integral

of the above Lagrangian and applies Hamilton’s principle to obtain the equations of motion.

Requiring the action to be stationary under changes of q(t), c(t) and d(t), ignoring the various

boundary terms that arise in the variation of the action, leads to the following differential

equations,

mq̈ +
∂V

∂q
= 0 , (13.2)

iḋ+
∂V

∂Rc
= 0 , (13.3)

iċ− ∂V

∂Ld
= 0 , (13.4)

where the suffix R (L) on the fermionic derivatives denotes right(left)-differentiation. Ob-

viously, the Lagrangian and the equations of motion can only be interpreted in the context

of a Grassmann algebra, as introduced in the previous chapter. However, there is a subtlety

with the boundary conditions and thus with the application of Hamilton’s principle for the
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fermionic trajectories, because the Lagrangian (13.1) contains terms that are at most linear

in the time derivative of the fermionic coordinates. The corresponding equations of motion

(13.3-13.4) are therefore first-order differential equations, whose solution becomes unique

once the trajectory is specified at one instant of time. So unlike for the coordinate q(t),

where one has a second-order differential equation, whose determination requires to fix the

trajectory at two different instants of time, Hamilton’s principle can only be consistently

applied for the fermionic coordinates provided one fixes only one of the endpoints for the

trajectories specified by c(t) and d(t). More explicitly, suppose we consider trajectories at

times t satisfying t1 ≤ t ≤ t2 and we fix q(t1) = q1, q(t2) = q2, d(t2) = d2 and c(t1) = c1.

The solutions of (13.2-13.4) are then uniquely determined. The endpoint values d(t1) and

c(t2) are left unrestricted and will follow from the classical equations of motion. The action,

whose variation subject to these boundary conditions leads to the equations of motion, is

equal to

S[q(t), d(t), c(t)] = −id(t2) c(t2) +

∫ t2

t1

dt L(q, q̇, c, ċ, d) . (13.5)

We now proceed with the canonical formulation of the theory. Canonical momenta are

defined in the usual manner,

p =
∂L

∂q̇
, pc = −i ∂L

∂Rċ
. (13.6)

Hence pc = d, whereas the canonical momentum associated with d vanishes.14

The Hamiltonian is defined by

H = p q̇ + ipc ċ− L . (13.7)

Because the Lagrangian is at most linear in the time derivatives of the fermionic coordinates,

the Hamiltonian takes the simple form,

H(q, p, c, pc) =
p2

2m
+ V (pc, c, q) . (13.8)

Hamilton’s equations can be derived straightforwardly15 from the Euler-Lagrange equations,

dp

dt
=
∂L

∂q
,

dpc
dt

= −i ∂L
∂Rc

, 0 = i
∂L

∂Lpc
, (13.9)

14The conditions pc = d and pd = 0 impose constraints on the phase space. We solve these constraints
by simply restricting the phase space coordinates to q, p, c and d, but note that there exists a general and
more elaborate theory of phase-space constraints, originally introduced by Dirac.

15Remember that the Lagrangian is a function of coordinates and velocities, while the Hamiltonian is a
function of coordinates and momenta. Consequently, partial derivatives of the Lagrangian and the Hamil-
tonian are not the same, although one conventionally uses the same notation.
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by considering the change of H under a variation of p, q, q̇, pc, c and ċ. When collecting all

the terms, the variations proportional to δq̇ and δċ cancel by virtue of (13.6). Using (13.9),

the result then takes the form,

δH = −ṗ δq + δp q̇ + iδpc ċ− iṗc δc , (13.10)

which yields Hamilton’s equations,

ṗ = −∂H
∂q

, q̇ =
∂H

∂p
,

ṗc = i
∂H

∂Rc
, ċ = −i ∂H

∂Lpc
. (13.11)

Assuming that the variation in (13.9) are determined by their time evolution, we can sub-

stitute (13.11) and show that the Hamiltonian is a constant of the motion, as expected.

As usual Hamilton’s equations describe the time evolution in phase space, but here in a

phase space consisting of both commuting and anticommuting coordinates. Consider now

a function u(q(t), p(t), c(t), pc(t); t) of coordinates and momenta, with possibly an explicit

dependence on t. The time derivative of such a function can be written in the usual form,

du

dt
= (u,H) +

∂u

∂t
, (13.12)

where the bracket (A,B) is a generalization of the usual Poisson bracket and can be defined

as (observe that A and B are kept in the same order),

(A,B) ≡ ∂A

∂q

∂B

∂p
− ∂A

∂p

∂B

∂q
− i

∂A

∂Rc

∂B

∂Lpc
− i

∂A

∂Rpc

∂B

∂Lc
. (13.13)

This bracket applies to ‘functions’ A and B that can be commuting or anticommuting, but

obvious care is required in the order of writing the various terms. It obviously takes its

values in the Grassmann algebra. We note the following relations,

(A,B)† = −(B†, A†) , (B,A) = −(−)AB (A,B) , (13.14)

where in the exponent AB is the product of the degrees of A and B, so that (−)AB equals

−1 when both A and B are anticommuting (i.e. of odd degree), while in all other cases it is

equal to +1. We return to the precise definition of hermitean conjugation shortly. To derive

the relation above, one may for instance assume that c and pc are real. Note, however, that

right and left derivatives must be conjugate to each other.

When applied to the phase space coordinates the only nonvanishing brackets are,

(q, p) = 1 , (c, pc) = −i . (13.15)
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Quantization is now implemented by replacing the phase-space coordinates by operators and

the bracket by (i~)−1 times the corresponding (anti)commutators,

(A,B) −→ 1

i~

{
AB − (−)AB BA

}
. (13.16)

In particular this yields the canonical (anti)commutation relations,

[q, p] = i~ , {c, pc} = ~ , (13.17)

while all other (anti)commutators vanish.

So in this way we naturally arive at the same kind of theory described in chapter 11. We

should point out that at this point it may seem natural to associate hermitean operators to

c and pc, because both the ‘kinetic term’ ipcċ in the Lagrangian (13.1) and the boundary

term −ipc(t2) c(t2) in the action (13.5), are real under

c† = c , p†c = pc . (13.18)

This conjugation is compatible with the anticommutation relation {c, pc} = ~. However,

there is a second type of conjugation, namely

c† = pc , p†c = c , (13.19)

which is also compatible with the anticommutator, while the contribution in the action

from the kinetic term changes only by boundary terms. Both types of conjugations satisfy

(13.14). As it turns out, this is the conjugation that is physically relevant. For the matrix

representation of the anticommutator introduced in chapter 11, this was indeed the case as

c and pc correspond to b and b† defined in (11.2). This is imposed on us because c and pc

are nilpotent (non-hermitean) operators.

Hence we have now reobtained the matrix model of chapter 9 starting with an extended

dynamical system based on both commuting and anticommuting coordinates and momenta.

Whether or not one chooses to make use of the matrix formulation is now a matter of

convenience. We should stress that in this way we cannot formulate arbitrary matrix Hamil-

tonians, but only the ones that eventually admit an interpretation in terms of bosons and

fermions. In the next chapter we derive the path integral formulation for the anticommuting

fields.

Problem 13.1 :

Reconsider the path integral (2.17), which involves an integral over the trajectories q(t) and

p(t). Specify the boundary conditions and consider the expression in the continuum limit.
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Show that Hamilton’s principle leads to the Hamilton equations for p and q, with these

boundary conditions.

Problem 13.2 : Coherent state quantization

Consider the path integral in the phase-space representation where the action equals S[p(t), q(t)] =∫
dt [pq̇ −H(p, q)]. Subsequently choose the complex variable

a =
1√
2ω

(ωq + ip) . (13.20)

We assume ~ = 1.

1. Write the action in terms of a(t) and a∗(t) and show that, up to boundary terms it is

equal to

S[a(t), a∗(t)] =

∫
dt [ia∗ȧ−H(a∗, a)] . (13.21)

Derive the equations of motion for a and a∗ from Hamilton’s principle. Do not worry

about the precise boundary values for a and a∗.

2. Determine H(a∗, a) for the harmonic oscillator (we choose m = 1 and select the same

ω as above),

H = 1
2
(p2 + ω2 q2) . (13.22)

3. Note that this system has only first-order in time derivatives. Determine the momen-

tum conjugate to a and derive the canonical commutation relations for the operators

a and a∗.

4. View this system as a ’field’ theory based on two fields, a and a∗. What is the propa-

gator when using the Hamiltonian H(a∗, a) that you derived in question 2?

5. Show that a quantum-mechanical representation for the operators a and a∗ is given in

the “z-representation” by

a∗ = z , a =
d

dz
. (13.23)

In this representation a and a∗ act on wavefunctions ψ(z), where z is complex. Hence

the wavefunctions are holomorphic.

6. Show that the functions ψλ(z) ∝ exp(λz) are eigenfunctions of the operator a with

eigenvalue λ. These are the so-called coherent states. Show that the monomials

ψn(z) ∝ zn are eigenfunctions of the occupation number operator a∗a. (Remark:

In this representation hermitean conjugation and the normalizability of wavefunctions

is not so obvious. You may ignore these aspects here.)
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Problem 13.3 : First-order field equation for boson fields

Consider a theory based on five real fields, denoted by a five-component vector

Φ =


Φ0

Φ1

Φ2

Φ3

Φ4

 . (13.24)

The action has a form reminiscent of the Dirac action for fermions,

S = −1
2

∫
d4x Φ̄(βµ∂µ +M )Φ , (13.25)

and is thus at most linear in spacetime derivatives. Here, however the fields are commuting
and therefore describe bosons. The conjugate vector is defined by Φ̄ = ΦTη, with η a
symmetric 5 × 5 matrix (ηT = η) satisfying η2 = 1, and ΦT denotes the transposed of the
vector Φ.

The four matrices βµ and the matrix η are given by

β0 =


0 0 0 0 −1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0

 , β1 =


0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0

 , β2 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 1 0 0

 ,

β3 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0

 , η =


−1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 −1

 .

i) Give the mass dimension of the parameter M and the field Φ. Verify that the matrices

(η βµ) are antisymmetric. Show that χ̄βµρ = −ρ̄βµχ for two arbitrary five-component

vectors χ and ρ.

ii) Derive the equations of motion for Φ. Use them to express Φ0, Φ1, Φ2, and Φ3 in terms

of Φ4 and give the equation satisfied by Φ4. What are the degrees of freedom that this

Langrangian describes?

The phase space, described in terms of the coordinates Φi and their canonically conjugate

momenta, is reduced by a number of constraints. We now consider these constraints.

iii) Determine the canonically conjugate momentum for each of the fields Φi. Note that,

because the Langrangian does not contain any time derivatives of Φ1, Φ2 and Φ3, their

canonically conjugate momenta are zero. For this reason, we can solve for these three

fields using their equations of motion.
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iv) The relevant phase space quantities are hence Φ0 and Φ4, and their conjugate momenta.

Show that these quantities are subject to a constraint as well. As a result, the effective

phase space is smaller. Give the dimension of the effective phase space and argue that

this result is in agreement with the result obtained in ii).

v) There exist many relations among products of matrices βµ. Show that βµβµβµ is

proportional to βµ for arbitrary values of µ. A more general relation (which you are

not asked to prove) is

βµβνβλ + βλβνβµ = βµηνλ + βληνµ , (13.26)

where ηµν is the Minkowski metric. Derive from this relation an identity for p/3, where

p/ ≡ βµpµ. Using this identity and the equations of motion (in matrix form, i.e. not the

component form), show that each of the components of Φ satisfies the Klein-Gordon

equation.

vi) Show that the propagator of the field Φ (which can be defined as the vacuum expecta-

tion value of the time-ordered product of Φ̄(x) and Φ(y) in momentum space), is given

by

∆(p) =
1

i(2π)4

1

p2 +M2 − iε

ip/(ip/−M) + p2 +M2

M
, (13.27)

vii) The propagator has a singularity for p2 = −M2. What can you say about the residue

of the 5 × 5 matrix ? Analyse the residue by choosing pµ = (~0, p0) and studying the

propagator in the limit p0 → ±M . Explain the result.

We now add a complex scalar field scalar σ to the model, accompanied by an interaction

with the field Φ, which has a form similar to the interaction of a gauge field with σ, i.e.

S ′ = −
∫

d4x
[
|∂µσ|2 +m2|σ|2 + ieV µ [σ∗(∂µσ)− (∂µσ

∗)σ]
]
. (13.28)

Here V µ is given by V µ = Φ̄βµu with u a constant 5-component vector.

viii) Draw the two 1-loop self energy diagrams of the σ field. Argue that one of them does

not contribute.

Problem 13.4 : Free fermions in 1 + 1 dimensions

Consider the following fermionic field theory in one space and one time dimension with the

Lagrangian

L0 =

∫
d2x iψ†(x, t)(∂t + ∂x)ψ(x, t) . (13.29)
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i) Write down the field equation and give its (plane-wave) solutions.

ii) Derive how the fermion fields should transform in order that this Lagrangian density

(or the action) be invariant under Lorentz transformations. Use here that under a

Lorentz transformation with β = v/c, we have

x′ ± t′ =

√
1∓ β

1± β
(x± t) ,

In addition we introduce an interaction with an electromagnetic field Aµ, via

∂t + ∂x → ∂t + ∂x − iAt − iAx .

This leads to a Lagrangian that we will denote by L1. The electric charge is defined by the

coupling of the fermions to the field At, and is thus given by

Q =

∫
dx ψ†(x, t)ψ(x, t) . (13.30)

We now assume that the spatial coordinate x parametrizes a circle with circumference L;

the x-integrations then extend from 0 tot L.16 Furthermore we assume At = 0 and restrict

Ax to a constant value, so that Φ = LAx equals the magnetic flux through the circle. At

this stage it is possible to prove that a time-independent Ax can always be chosen equal to

a constant in a certain interval by using a suitable gauge transformation. We will not derive

this, but consequences of this fact will become apparent in the results below.

iii) Argue that the field ψ can be expanded in the following Fourier series

ψ(x, t) =
1√
L

∑
k

ψ(k, t) exp(ikx) ,

where k is equal to 2π/L times an integer n (which can be of either sign).

iv) Write down the Lagrangian L1, the Hamiltonian and the charge Q in terms of the

Fourier modes. Prove that the charge does not depend on the time by using the field

equations.

v) Determine the conjugate momenta and the anticommutation relations for ψ(k) and

ψ†(k) in the Schrödinger representation. Consider the commutation relations of the

Hamiltonian with ψ(k) and ψ†(k). Identify creation and annihilation operators (such

that creation operators increase the energy of a state).

16In the limit L → ∞ we can use
∑

k → (L/2π)
∫∞
−∞ dk. We also remind you of the relation∑

n exp(2πinx) =
∑

l δ(x− l), where on both sides of the equation the sum extends over all integers.
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vi) Argue that the wave function in the ’coordinate representation’ is a ‘function’ of the an-

ticommuting coordinates ψ(k). Define the momentum and write down the Schrödinger

equation in the coordinate representation (cf. Problem 5.5). Give the ground-state

wave function.

vii) Give the decomposition of the Heisenberg field ψ(x, t) as a Fourier series in terms of

the creation and annihilation operators found above. For Ax = 0, justify the following

decomposition for the Heisenberg field (in the L→∞ limit)

ψ(x, t) =

√
~
2π

∫ ∞
0

dk
[
a(k) eikx−iωt + b†(k) e−ikx+iωt

]
,

with ω = k ≥ 0, and identify the operators a(k) and b(k) in terms of the ψ(k).

viii) Calculate the anticommutator of the Heisenberg fields ψ†(x1, t1) and ψ(x2, t2) in the

special case that Ax = 0. Consider this result in the limit L→∞ and prove that it is

in agreement with Lorentz invariance.

ix) Consider again (for Ax 6= 0) the Hamiltonian in terms of the creation and annihilation

operators and show that the energy spectrum does not change under Φ → Φ + 2π.

Give an expression for the (infinite) energy of the groundstate, i.e., the state of lowest

energy, which depends on the flux Φ. Sketch the energy of the one-particle states (with

respect to the energy of the groundstate) as a function of k, first for Φ = 0 and then

for a value of Φ between 0 and 2π. Stress the qualitative differences.

x) Consider the charge operator and give the expression for the (infinite) charge of the

groundstate. Give also the charge of the one-particle states (with respect to the charge

of the groundstate).

xi) The infinite energy and charge of the groundstate is characteristic for a system with

infinitely many degrees of freedom. Of course, these expressions are not really well

defined. In practice one ignores these infinite contributions and there are good argu-

ments that justify this. However, in this case the expressions depend on the value of

the flux Φ. Show that the charge of the groundstate is insensitive to small changes in

the value of Φ, but changes with an amount ∆Q when we let the flux increase from 0

to 2π. Determine the value for ∆Q.

xii) Add a second fermion field, but now with Lagrangian

L2 =

∫
dx iψ†2(x, t)(∂t − ∂x − iAt + iAx)ψ2(x, t) .
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Determine the value of ∆Q for the combined system described by L1 + L2.
17

Problem 13.5 : Fermions in 2 + 1 dimensions

We consider a field theory for a complex anti-commuting field ψ(x). We have already seen

in chapter 9 that a natural term in the Lagrangian will be
∫

d3x ψ†(x)i∂tψ(x), but we still

need to find a term depending on the gradients of ψ(x).

In the non-relativistic limit we know that the energy of a (spinless) fermion with mo-

mentum ~p and mass m is equal to E(~p) = ~p2/2m. Argue that this requirement leads to the

Lagrangian

L(ψ†, ψ) =

∫
d3x ψ†(~x, t)

{
i∂t +

∇2

2m

}
ψ(~x, t) , (13.31)

by showing that the field-equation for ψ(~x, t) has the plane-wave solutions ψ(~p) exp[i~p · ~x−
iE(~p) t].

For a relativistic fermion we must also include the spin of the particle and ψ(x) becomes

a spinor (i.e. a vector in spin-space, whose dimension will be specified later on). We still

expect the term
∫

d3x ψ†(x)i∂tψ(x), where the components of the spinor fields are contracted

as in a complex inner product, but the gradient term must be modified because the energy

of a particle with momentum ~p and mass m is now equal to
√
~p2 +m2. To see how this can

be achieved consider the Lagrangian

L(ψ†, ψ) =

∫
d3x ψ†(x)

{
i∂t + iαi∂i − βm

}
ψ(x) , (13.32)

with αi and β matrices in spin-space. What is the field-equation for ψ(x) and ψ(~p), respec-

tively? Derive from the latter that the correct relativistic energy is obtained if {αi, αj} = 2δij,

{αi, β} = 0 and {β, β} = 2. Finally, show that by introducing the Dirac matrices γ0 = −iβ
and γi = −iβαi, the Lagrangian can be rewritten as

L(ψ̄, ψ) = −
∫

d3x ψ̄(x) {γµ∂µ +m}ψ(x) , (13.33)

where ψ̄(x) = ψ†(x)β = iψ†(x)γ0. Calculate also {γµ, γν}. Finally write down a plane-

wave expansion, analogous to (3.23), for solutions of the field equation that follows from

(13.33). This equation is the celebrated Dirac equation. (For more details, consult sections

5.1-3 of Field Theory in Particle Physics, where also the Lorentz invariance of the action

corresponding to the Lagrangian (13.33) is shown.)

17Systems with ∆Q 6= 0 are called anomalous and give rise to a violation of charge conservation.
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Problem 13.6 : Quantization of relativistic fermions in 2 + 1 dimensions

In this exercise we will derive the plane-wave expansion for a Dirac field ψ(t, ~x) in three

spacetime dimensions and canonically quantize it. Consider the Lagrangian density describ-

ing a free massive fermion in three spacetime dimensions (we take c, the velocity of light,

equal to c = 1),

L = i ψ† ∂tψ + ψ† σ3 ~σ · ~∇ψ −mψ†σ3ψ , (13.34)

where σi are the Pauli matrices satisfying σiσj = δij 1+ i εijkσk, and conventially represented

by

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (13.35)

The vector arrow denotes vectors in the two spatial dimensions, i.e.,

~x = (x1, x2) , ~p = (p1, p2) , ~∇ = (∂1, ∂2) , ~σ = (σ1, σ2) . (13.36)

and the inner product is the usual one, ~x ·~y = x1 y1 +x2 y2. Note that ψ is a two-component

spinor.

i) Derive the field equations for ψ(t, ~x ) and ψ†(t, ~x ).

ii) Consider plane wave solutions ψ(t, ~x ) ∼ ψ(~p ) ei~p·~x−ip0t and show that they must satisfy

the equation (
p0 ip1 + p2

ip1 − p2 −p0

)
ψ(~p) = mψ(~p) . (13.37)

Show that, to have non-trivial solutions ψ(~p ) to the above equation, p0 must satisfy

p0 = ±ω(~p ) , where ω(~p ) =
√
~p 2 +m2 . (13.38)

Argue that this indicates that the theory based on (13.34) is relativistically invariant.

iii) Assume that the field is placed in a box with volume V and that periodic boundary

conditions are imposed. Argue that ψ(t, ~x) can be expanded as

ψ(t, ~x ) =
1√
V

∑
~p

ψ(t, ~p ) ei~p·~x . (13.39)

Give the possible values of the momenta ~p and write down the Lagrangian in terms of

ψ(t, ~p ) and ψ†(t, ~p ).
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iv) Determine the conjugate momentum π(t, ~p ) of ψ(t, ~p ) and prove that the Hamiltonian

is given by

H =
∑
~p

ψ†(t, ~p )σ3(−i ~σ · ~p+m)ψ(t, ~p ) . (13.40)

Show that σ3(−i ~σ · ~p + m) is hermitean (so that the Hamiltonian is hermitean) and

argue that its eigenvalues are equal to ±ω(~p ), where ω(~p ) was defined in (13.38).

v) We now choose a basis for ψ(t, ~p ) in such a way that the Hamiltonian becomes diagonal.

The eigenvectors of σ3(−i ~σ · ~p +m) with eigenvalue ω(~p ) and −ω(~p ) are denoted by

uα(~p ) and vα(~p ), respectively. They take the form

uα(~p ) =
√
m+ ω

(
1

ip1 − p2

m+ ω

)
, vα(~p ) =

√
m+ ω

 ip1 + p2

m+ ω

1

 . (13.41)

Show that these eigenvectors are orthogonal and normalized according to

v†u = u†v = 0 , u†u = v†v = 2ω . (13.42)

(We note in passing that u†σ3u = 2m and v†σ3v = −2m.)

Using u(~p ) and v(~p ) we decompose the two-component field ψα(t, ~p ) according to

ψα(t, ~p ) =

√
~
2ω

[
c+(t, ~p)uα(~p ) + c−(t, ~p) vα(~p )

]
. (13.43)

Subsequently we proceed to quantize the system in the Schrödinger picture, promoting the

modes of ψ to time-independent operators ψα(~p ), and the modes of the conjugate momentum

to momentum operators π(~p ). The conjugate momentum was already considered in iv).

vi) Impose the canonical quantization conditions and give the value of the anti-commutators,{
ψα(~p ), ψβ(~p

′)
}
,

{
ψ†α(~p ), ψβ(~p

′)
}

and
{
ψ†α(~p ), ψ†β(~p

′)
}
. (13.44)

Here α, β = 1, 2 denote spinor components. Subsequently derive the anti-commutation

relations for the Schrödinger picture operators c±(~p ) and c†±(~p ), making use of (13.42).

vii) Express the Hamilton operator H in terms of c†±(~p ) and c±(~p ). Evaluate the commu-

tator between the Hamiltonian H and the operators c†±(~p ) and c±(~p ); identify which

of these operators play the role of annihilation operators (a(~p ), b(~p )) and of creation

operators (a†(~p ), b†(~p )). Convert now to the Heisenberg picture with operators a(t, ~p ),

b(t, ~p ), a†(t, ~p ) and b†(t, ~p ) and determine the time dependence of these operators.
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viii) Express the quantum field ψ(t, ~x ) in terms of the Schrödinger picture creation and

annihilation operators. Give the corresponding expression in the large volume limit.

Does this result satisfy the field equation and why (not)?

ix) Give the energy of the ground state 〈0|H|0〉. Discuss the size and the sign for given ~p.

Did you expect this result?

Problem 13.7 : Lorentz invariance and fermions in 2 + 1 space-time dimensions

Consider the free massive spinor field ψ in 2 + 1 space-time dimensions described by La-

grangian (13.33) with the gamma matrices defined by γ0 = −iσ3, γ
1 = σ1 and γ2 = σ2 and

ψ̄ ≡ iψ†(γ0)T. Lorentz transformations on the spinor are defined by

ψ′(x′) = U ψ(x) , (13.45)

where U is a matrix in the two-dimensional spinor space. Lorentz transformations consist of

spatial rotations and boosts.

i) For rotations we have

~x→ ~x ′ = O(θ) ~x ,

U(θ) = exp[1
2
iθσ3] , (13.46)

where O(θ) is the 2× 2 rotation matrix,

O(θ) =

(
cos θ sin θ

− sin θ cos θ

)
. (13.47)

Use the identity (which can be proven, for instance, by showing that both sides of the

equation satisfy the same linear differential equation),

U−1(θ)~σ U(θ) = O(θ)~σ , (13.48)

to prove that

(/∂ψ)′(x′) = U(θ) /∂ψ(x) , (13.49)

Show now that the Lagrangian (13.33) is rotationally invariant.

ii) We can extend this proof to all Lorentz transformations by including the Lorentz boosts

(c = 1). Finite boosts are conveniently parametrized by a vector ~y, which is parallel

to ~β = ~v/c and has length

y = log

√
1− β

1 + β
. (13.50)
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The vector ~y is known as the rapidity. Note that ~y ≈ ~β for small ~β. The relevant

transformations are now given by

~x→ ~x ′ = cosh y ~x+ sinh y
~y

y
t ≈ ~x+ ~β t ,

t→ t′ = cosh y t+ sinh y
~y · ~x
y

≈ t+ ~β · ~x ,

U(~y) = exp[−1
2
i~y · ~σσ3] =

cosh y/2− i sinh y/2
~y · ~σσ3

y
≈ 1− 1

2
i~β · ~σσ3 . (13.51)

Note that −iσiσ3 = γiγ0 is an hermitean matrix and demonstrate that ψ̄′(x′) =

ψ̄(x)U−1(~y). Subsequently prove that (note the obvious change of notation, ~γ = ~σ)

U−1(~y)~γ U(~y) = cosh y ~γ + sinh y
~y

y
γ0 ,

U(~y) γ0 U(~y) = cosh y γ0 + sinh y
~y · ~γ
y

. (13.52)

Show now that the Dirac Lagrangian (13.33) is also invariant under Lorentz boosts.

iii) Consider the spinor uα(~p) defined in (13.41) and verify (13.45) for spatial rotations

(replacing ψ(~x, t) by u(~p).

14 Path integrals for fermions

Let us return to the model of chapter 11 and consider the path integral. There are several

ways in which one can proceed. First we may stay within the matrix formulation with two-

component wave functions. We can follow the same steps as in chapter 1, taking into account

that we have a matrix Hamiltonian and that the states carry an extra quantum number.

Obviously the transition function then takes the form of a two-by-two matrix and we have

W (q2, t2; q1, t1) =

∫
q(t1)=q1
q(t2)=q2

Dq(t) Dp(t)
2π~

exp
{ i

~

∫ t2

t1

dt
[
p(t) q̇(t)−H(p(t), q(t))

]}
. (14.1)

We remind the reader (cf. 1.16) that the boundary conditions on p(t) are such that we

integrate over p(t1), while p(t2) is left unrestricted (so that the result satifies the product

rule (2.13); cf. exercise 3.8).

Formally this is the same result as found before except that we are dealing with two-by-

two matrices. We already evaluated the corresponding expressions for the model of chapter 11

in problem 11.4. However, we prefer to avoid a matrix formulation here. Ultimately we are
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interested in a field theory consisting of an infinite number of oscillators, so that the matrices

will become infinite-dimensional and impossible to deal with. Our goal is therefore to find

a description in terms of anticommuting variables, such that the anticommuting degrees of

freedom can be treated in parallel with the commuting ones and no matrices are necessary.

The material presented in the previous chapters makes it rather straightforward to set up

such a formulation.

First we introduce a way of dealing with matrices where matrix multiplication is imple-

mented by means of integrals over anticommuting c-numbers. Consider two-by-two matrices

Aij, where i, j = 0, 1. To each matrix we associate an element of the Grassmann algebra,

A(ᾱ, α) ≡ A00 + ᾱ A10 + A01 α+ ᾱ A11 α , (14.2)

where α and ᾱ are two anticommuting c-numbers. Multiplication of two matrices A and B

is now implemented by performing the following integral over anticommuting c-numbers,∫
dβ̄ dα eαβ̄ A(ᾱ, α)B(β̄, β) = (AB)(ᾱ, β) . (14.3)

In other words, the above integral over the product of two Grassmann algebra elements

associated with matrices A and B yields the element of the Grassmann algebra corresponding

to the matrix product AB. This result is easy to verify by writing out the expression for the

integral and using the results for integrals over anticommuting c-numbers.

Note that the Grassmann-algebra valued form corresponding to the unit matrix is equal

to

1 −→ 1(ᾱ, α) = 1 + ᾱ α = eᾱ α . (14.4)

We also need the following expression in the limit where ε is small,

exp

[
ε

(
A00 A01

A10 A00 + A11

)]
−→ exp

[
ᾱ α+ εA(ᾱ, α)

]
+ O(ε2) . (14.5)

This result follows straightforwardly from a power series expansion of the exponential.

Also the ordinary trace over the matrix can be evaluated as an integral, as well as the

graded trace, introduced in chapter 11, where certain entries of the matrix contribute with

opposite sign. The reader can easily verify the following results

Tr (A) ≡ A00 + A11 = −
∫

dᾱ dα e−αᾱA(ᾱ, α) , (14.6)

Tr ((−)F A) ≡ A00 − A11 =

∫
dᾱ dα eαᾱA(ᾱ, α) . (14.7)
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Finally we note that hermitean conjugation of the matrix is consistent with hermitean

conjugation of the corresponding element of the Grassmann algebra (according to the pre-

scription given in chapter 9), where α† = ᾱ and ᾱ† = α. This leads to

(A†)(ᾱ, α) = (A(ᾱ, α))† . (14.8)

For a unitary matrix we thus have∫
dβ̄ dα eαβ̄ A(ᾱ, α) (A(β̄, β))† = eᾱβ . (14.9)

Rather than setting up a path integral expression for the matrix valued Hamiltonian,

we start from the corresponding Grassmann-algebra valued expression, which we denote by

W (q2, t2, ᾱ2; q1, t1, α1). The approach is the same as in chapter 2. We divide a time interval

(t0, tN) into N intervals (ti, ti+1) with ti+1 − ti = ∆, so that tN − t0 = N∆. Then we

approximate the path integral by a product of path integrals with small time increments ∆,

so that W (qN , tN , ᾱN ; q0, t0, α0) can be written as

W (qN , tN , ᾱN ; q0, t0, α0) =

∫
dqN−1 · · ·

∫
dq1

∫
dᾱN−1 dαN−1 · · ·

∫
dᾱ1 dα1

×

(
N−1∏
i=1

eαi ᾱi

)
W (qN , tN , ᾱN ; qN−1, tN−1, αN−1) · · ·W (q1, t1, ᾱ1; q0, t0, α0). (14.10)

The matrix product is correctly implemented by virtue of (12.3). The Hamiltonian is now a

two-by-two matrix, which depends on the operators P and Q, which we decompose according

to (12.2). For small values of ∆ we may write

W (qi+1, ti+1, ᾱi+1; qi, ti, αi) = 〈qi+1|eᾱi+1 αi− i
~H(P,Q,ᾱi+1,αi)∆|qi〉 (14.11)

≈ 〈qi+1|qi〉1−
i∆

~

 〈qi+1|H00(P,Q)|qi〉 〈qi+1|H01(P,Q)|qi〉

〈qi+1|H10(P,Q)|qi〉 〈qi+1|H00(P,Q) +H11(P,Q)|qi〉

 ,

so that for vanishing H we obtain the unit matrix. As a consequence of this parametrization

H00 represents the part of the Hamiltonian that acts uniformly on the two-dimensional vector

space (cf. 12.5).18 Inserting a complete set of eigenstates of the momentum operator then

leads to

W =

∫
dpi 〈qi+1|pi〉〈pi|eᾱi+1 αi− i

~H(P,Q,ᾱi+1,αi)∆|qi〉 (14.12)

≈
∫

dpi
2π~

exp

(
ᾱi+1 αi +

i

~
[pi(qi+1 − qi)−H(pi, qi, ᾱi+1, αi)∆]

)
,

18Observe that the matrix Hamiltonian, such as given in (11.1), does not correspond directly to the
Grassmann-parameter representation H(P,Q, ᾱi+1, αi) according to (14.2); instead the relationship proceeds
through (14.11).
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where the two-component character resides in the Grassmann-valued character of the Hamil-

tonian, so that there is no need for indicating the two-component nature of the states. As

before we made use of (1.7) and of the fact that ∆ is small.

Putting the previous expressions together we thus obtain (observe that there is no de-

pendence on ᾱ0 and αN)

W (qN , tN , ᾱN ; q0, t0, α0) =
N−1∏
i=1

∫
dqi dᾱi dαi

N−1∏
i=0

∫
dpi
2π~

(14.13)

× exp

(
ᾱN αN −

N∑
i=1

ᾱi(αi − αi−1)

)

× exp

(
i

~
∆

N−1∑
i=0

[
pi(qi+1 − qi)

∆
−H(pi, qi, ᾱi+1, αi)

])

=
N−1∏
i=1

∫
dqi dᾱi dαi

N−1∏
i=0

∫
dpi
2π~

× exp

(
ᾱN αN +

i

~
∆

N−1∑
i=0

[
i~ᾱi+1(αi+1 − αi)

∆
+
pi(qi+1 − qi)

∆
−H(pi, qi, ᾱi+1, αi)

])
.

The boundary conditions on the fermionic path are in accord with the description given in

the previous chapter and the boundary term ᾱNαN coincides with the corresponding term

in the action (13.5). Observe that this term, which actually vanishes against a similar term,

is important for establishing the decomposition rule,∫
dq2 dβ̄ dα eαβ̄W (q3, t3, ᾱ; q2, t2, α) W (q2, t2, β̄; q1, t1, β) = W (q3, t3, ᾱ; q1, t1, β) . (14.14)

The continuum limit is now straightforward and after rescaling of ᾱ and α with a factor

~−1/2, we have

W (q2, t2, ᾱ2; q1, t1, α1) =

∫
Dq(t)

∫
Dp(t)

2π~

∫
D ᾱ(t)√

~

∫
Dα(t)√

~
(14.15)

× exp

(
i

~

[
−iᾱ(t2)α(t2) +

∫ t2

t1

dt
[
iᾱ(t) α̇(t) + p(t) q̇(t)−H(p(t), q(t), ᾱ(t), α(t))

]])
,

where the various trajectories have the following characteristic properties:

q(t1) = q1 , q(t2) = q2 , α(t1) = α1 , ᾱ(t2) = ᾱ2 , (14.16)

and there is no integration over p(t2), α(t2) and ᾱ(t1) (which are not contained in the

integrand), while we do integrate over p(t1). Obviously, the term in the exponent, including
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the boundary term, is precisely the action defined earlier in (13.5). This garantuees that the

~ → 0 limit leads to the correct classical results. In the Hamiltonian, we have absorbed the√
~ from the rescaling of the fermionic coordinates into the definition of the matrix elements

of H.

Let us momentarily return to the discrete version. It is possible to obtain the expression

for the trace (with respect to the original matrix indices) of the path integral by using

(12.6). Hence we integrate (14.13) over ᾱN and α0 with an exponential factor − exp(−α0ᾱN).

Therefore the exponent in (14.13) will explicitly contain the following combination of terms

−ᾱN(−α0 − αN−1)−
N−1∑
i=1

ᾱi(αi − αi−1) .

The trace over the bosonic states is implemented by taking the integral over qN = q0, as was

shown in (5.21). Close inspection now shows that the combined trace coincides with

Tr W = −
N−1∏
i=0

∫
dqi dᾱi dαi

N−1∏
i=0

∫
dpi
2π~

× exp

(
i

~
∆

N−1∑
i=0

[
i~ᾱi+1(αi+1 − αi)

∆
+
pi(qi+1 − qi)

∆
−H(pi, qi, ᾱi+1, αi)

])
.

for antiperiodic fermionic paths, i.e. paths satisfying ᾱN = −ᾱ0 and αN = −α0, and periodic

bosonic paths with qN = q0. After converting to the Euclidean case, we can thus obtain

a closed expression for the partition function for a theory where the original Hamiltonian

is a matrix, in which the matrix degrees of freedom are incorporated by anticommuting

coordinates and momenta, whose treatment is very analogous to the treatment of commuting

coordinates and momenta.

With these results, we can evaluate the fermionic path integral and set up a perturbation

expansion in terms of Feynman diagrams, precisely as for the bosonic theories. This will

be discussed in chapter 15. Of course, one must be aware of various minus signs that show

up in actual calculations, due to the anticommuting nature of the fermionic coordinates or

fields. We briefly mention two of them.

First consider the definition of fermionic correlation functions. On the basis of the path

integral representation the correlation function should exhibit the fact that the fermion

operators are anticommuting. More explicitly, it is clear that one should have

〈α(t) ᾱ(t′)〉 = −〈ᾱ(t′)α(t)〉 , (14.17)

for a correlation function defined by

〈α(t) ᾱ(t′)〉 =

∫
Dφα(t) ᾱ(t′) e

i
~S[φ]∫

Dφ e i
~S[φ]

, (14.18)
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where φ generically denotes all the variables in the path integral. For the operator definition

the minus sign in (14.18) implies that one must take a modified time-ordered product,

T (a(t) ᾱ(t′)) = θ(t− t′)α(t) ᾱ(t′)− θ(t′ − t) ᾱ(t′)α(t) . (14.19)

Secondly, in the evaluation of Feynman diagrams it turns out that a closed loop associated

with a fermion line acquires an overall minus sign.

Problem 14.1 :

Consider the Hamiltonian H(ᾱ, α) = ~ω ᾱα, which corresponds in matrix notation to

H =

(
0 0

0 ~ω

)
,

and calculate the transition function W (ᾱN , tN ;α0, t0) by first explicitly performing the

integrations
∫
dᾱN−1dαN−1 . . .

∫
dᾱ1dα1 in the path integral (14.13) and then taking the limit

N →∞ and ∆ → 0 such that N∆ = tN − t0 remains fixed. (It is convenient to perform the

integrals starting from the left, i.e. from α and ᾱ with the highest index values.) Compare

the result with equation (11.12) and explain the differences. Calculate the transition function

also by immediately making use of the continuum limit of the path integral, i.e. find the

classical trajectories α(t) and ᾱ(t), write the transition function as f(tN − t0) e
iScl/~ and

determine f(tN − t0), for instance by requiring that the evolution operator for one of the

states takes the expected form (semiclassical approximation). Note once more the relevance

of the boundary term at t = t2. (Comment: in the continuum limit the Hamiltonian reads

H(ᾱ, α) = ω ᾱα, because of the rescaling of the fermionic coordinates by
√

~.)

Problem 14.2 :

We have seen in chapter 11 that the Hamiltonian of the fermionic harmonic oscillator is

H = ~ωb†b, which has the eigenstates |0〉 and |1〉 = b†|0〉. In matrix notation the transition

function is therefore

Wij(tN ; t0) = 〈i|e−iH(tN−t0)/~|j〉 .

We now introduce the so-called coherent states |α〉 ≡ exp(−αb†)|0〉 = |0〉+ |1〉α, where α is

again an anti-commuting number that also anticommutes with the operators b and b†. Prove

that these coherent states obey b|α〉 = α|α〉, 〈α′|α〉 = eᾱ
′α and

∫
dᾱ dα e−ᾱα|α〉〈α| = 1.

Furthermore, show now that

W (ᾱN , tN ;α0, t0) = 〈αN |e−iH(tN−t0)/~|α0〉.
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Can you understand on the basis of these results that the action,

S[ᾱ, α] = −i~ᾱ(t2)α(t2) +

∫ t2

t1

dt {i~ᾱα̇−H(ᾱ, α)} ,

appearing in the path integral forW (ᾱN , tN ;α0, t0), is not hermitian if one uses the physically

relevant conjugation introduced in equation (13.19)? (Hint: To facilitate matters, consider

the path integral in the special case H = 0.) Determine also S†[ᾱ, α] and explain why this

is the desired result by writing a path integral representation for complex conjugate matrix

element of the evolution operator.

Problem 14.3 :

Calculate, using the fermionic harmonic oscillator Hamiltonian H = ~ω b†b and the modified

time-ordered product of (14.19), the two-point correlation function G(t, t′) = 〈b(t) b†(t′)〉.
Here b(t) and b†(t) are the usual annihilation and creation operators in the Heisenberg

picture and the average is with respect to the groundstate |0〉. Show that it can be written

as

G(t, t′) =
−1

2πi

∫ ∞
−∞

dq
e−iq(t−t

′)

q − ω + iε
.

Therefore, G(t, t′) now obeys the first-order differential equation (i∂t − ω)G(t, t′) = iδ(t−t′) .
Obtain the same result by path-integral methods, i.e. by functional differentiation of the

logarithm of

W
(0)
J =

∫
DᾱDα exp

(
i

~
S[ᾱ, α] +

∫
dt {J̄(t)α(t) + ᾱ(t)J(t)}

)
.

Problem 14.4 :

Consider a theory based on the Lagrangian

S[q, ᾱ, α] = −1
2
m q̇2 + 1

2
mω2 q2 + iᾱα̇− (ω′ + g q)ᾱα ,

and calculate the contribution from a closed fermion loop to the two-point correlation func-

tion 〈q(t) q(t′)〉. (Ignore that the actual integral vanishes). Pay particular attention to the

overall sign and analyze how a closed-fermion loop is always accompanied by an extra minus

sign.

Problem 14.5 :

Write the partition function for the (Euclidean) harmonic oscillator with antiperiodic bound-

ary conditions as

Z
(−)
β =

∫
AP

Dq(τ) exp

(
−m

~

∫ ~β

0

dτ q(τ)
[
− d2

dτ 2
+ ω2

]
q(τ)

)
∝
(

det AP

[
− d2

dτ 2
+ ω2

])−1/2
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Also consider the corresponding expression of the fermionic partition function

Z fermion
β =

∫
AP

Dᾱ(τ) Dα(τ) exp

(
−1

~

∫ ~β

0

dτ ᾱ(τ)
[ d

dτ
+ ω

]
α(τ)

)
∝ det AP

[ d

dτ
+ ω

]
15 Feynman diagrams for fermions

The derivation of the Feynman rules and diagrams for fermions proceeds along the same

lines as in chapter 9. There are various technical complications, however. The most essential

one has to do with the various sign factors arising from the anticommuting nature of the

fermion fields. Furthermore, there are complications associated with the fact that relativistic

fermion fields transform in representations of the Lorentz group. Those are not typical for

fermion fields and also arise for vector fields and the like, which are bosonic fields.

To make matters concrete we consider a simple relativistic field theory for a massive

complex fermion field ψ(t, ~x) in three space-time dimensions (with c, the velocity of light,

equal to c = 1), described by the Lagrangian,

L = i ψ† ∂tψ + ψ† σ3 ~σ · ~∇ψ −mψ†σ3ψ . (15.1)

Note that ψα denotes a two-component fermion field that transforms as a spinor under

(2 + 1)-dimensional Lorentz transformations. Furthermore the σi are the Pauli matrices

satisfying σiσj = δij 1 + i εijkσk, and conventionally defined by

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (15.2)

The same model was already considered in problem 13.6. The arrow refers to vectors in the

two spatial dimensions, i.e.,

~x = (x1, x2) , ~p = (p1, p2) , ~∇ = (∂1, ∂2) , ~σ = (σ1, σ2) . (15.3)

For these vectors the inner product is the usual one, ~x · ~y = x1 y1 + x2 y2. The relativistic

inner product is an extension thereof with a negative sign for the time component i.e.,

ηµν ∂µ∂ν = ~∇2 − (∂t)
2. Hence ηµν is a diagonal matrix with eigenvalues +1,+1,−1 for

µ, ν = 1, 2, 0.

In the relativistic context it is convenient to define a conjugate field ψ̄ (to be regarded

as a row spinor) by

ψ̄ ≡ iψ†(γ0)T , (15.4)

where we introduce gamma matrices γµ,

γ0 = −iσ3 , γ1 = σ1 , γ2 = σ2 , (15.5)
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whose defining property is that they satisfy the anti-commutation relations

{γµ, γν} = 2 ηµν , (15.6)

Obviously the definitions of the conjugate spinor field ψ̄ and of the gamma matrices are

not unique and we caution the reader that there exist many different conventions in the

literature.

With the above definitions we rewrite (15.1) as

L = −ψ̄
[
γ0∂t + ~γ · ~∇

]
ψ −mψ̄ψ

= −ψ̄[/∂ +m]ψ . (15.7)

Note the convenient notation /∂ = γµ∂µ, which will be used for any covariant three-vector.

We also note the convenient relation

/∂ /∂ = � = ηµν ∂µ∂ν , (15.8)

which holds by virtue of (15.6).

It is straightforward to derive the field equations for ψα(t, ~x ) and ψ̄α(t, ~x ) by requiring the

action corresponding to (15.7) to be stationary. Here it is crucial to realize that ψ and ψ̄ are

independent fields, and furthermore that the variations δψ and δψ̄ are also anticommuting.

In that situation one is thus dealing with four anticommuting fields, ψ, ψ̄, δψ and δψ̄. See,

however, problem 15.2. The field equation is the Dirac equation,

/∂ψ +mψ = 0 , ψ̄
←
/∂ −mψ̄ = 0 . (15.9)

The second equation is related to the first one by hermitean conjugation.

To bring out the difference with commuting fields and to consider a number of simple

examples, we also introduce a bosonic field φ that interacts with the fermions,

Ladd = −1
2
(∂µφ)2 − 1

2
µ2φ2 + g φ ψ̄ψ . (15.10)

We now follow the same procedure as in chapter 9 and decompose the action into a part

S0 that is quadratic in the fields, and interaction terms contained in SI which may involve

any power of the fields (c.f. (9.1). To S0 we add external sources, just as in (9.3). In the

case at hand we need three types of sources, one for ψ, one for ψ† and one for φ,

Ssources =

∫
d3x

{
Jφ(x)φ(x) + ψ̄α(x) Jα(x) + J̄α(x)ψα(x)

}
, (15.11)

Consistency requires the sources Jα and J̄α to be anticommuting. Observe that spinor

quantities such as J are written with lower indices and conjugate spinors such as J̄ with upper
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spinor indices. The source Jφ coupling to the bosonic field φ is commuting. Subsequently

we consider the expression

Z
(0)
J =

∫
DψDψ̄Dφ exp

{
i

~
S0[ψ, ψ̄, φ] + Ssources

}
. (15.12)

Integrating out the fields in this path integral we obtain the expression,

exp

[∫
d3x d3y

{
J̄α(x) ∆α

β(x, y) Jβ(y) + 1
2
J(x) ∆(x, y) J(y)

}]
, (15.13)

where the expressions for the propagators ∆α
β(x, y) and ∆(x, y) are related to the inverse

of the quadratic terms appearing in S0, as before. This is expressed by the relations,

i

~
[/∂x +m]α

β ∆β
γ(x, y) = δα

γ δ3(x− y) ,

i

~
[−�x + µ2] ∆(x, y) = δ3(x− y) . (15.14)

For the Lagrangians that we discuss the propagators are functions of x− y which are most

conveniently written as a Fourier integral,

∆α
β(x− y) =

~
i(2π)3

∫
d3k eik·(x−y) ([i/k +m]−1

) β
α

=
~

i(2π)3

∫
d3k

eik·(x−y)

k2 +m2
[−i/k +m]α

β ,

∆φ(x− y) =
~

i(2π)3

∫
d3k

eik·(x−y)

k2 + µ2
. (15.15)

In the second line we rewrote the integrand by making use of the identity /k2 = k2.

These propagators can be identified with second derivatives of logZ
(0)
J with respect to

the relevant external sources,

∆α
β(x, y) = 〈ψα(x) ψ̄β(y)〉

=
∂

∂LJ̄α(x)

∂

∂RJβ(y)
logZ

(0)
J

∣∣∣
J=0

=

∫
DφDψDψ̄ ψα(x) ψ̄β(y) e

i
~S0[φ,ψ,ψ̄]∫

DφDψDψ̄ e
i
~S0[φ,ψ,ψ̄]

,

∆φ(x, y) = 〈φ(x)φ(y)〉

=
∂

∂Jφ(x)

∂

∂Jφ(y)
logZ

(0)
J

∣∣∣
J=0

=

∫
DφDψDψ̄ φ(x)φ(y) e

i
~S0[φ,ψ,ψ̄]∫

DφDψDψ̄ e
i
~S0[φ,ψ,ψ̄]

. (15.16)
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Figure 3: Diagrammatic representation of (15.18).

Here the fermionic derivatives with respect to the sources J̄ are left derivatives and with

respect to the sources J are right derivatives. The reader is encouraged to verify that

possible minus signs that one may encounter when taking fermionic functional derivatives,

do not appear in the final expressions.

To obtain the Feynman diagram expansion we rewrite the full functional integral as in

(9.6),

W = exp

{
i

~
SI

[
∂

∂LJ̄α
,

∂

∂RJβ
,
∂

∂Jφ

]}
Z

(0)
J

∣∣∣
J=0

. (15.17)

The only subtlety here is again to ensure that minus signs that may emerge when taking

fermionic derivatives are correctly taken into account.

The evaluation of Feynman diagrams follows now from the above results in close analogy

with the evaluation of Feynman diagrams for bosonic fields. We close with the example of a

one-loop diagram with a single external φ-line. It follows from extracting the contribution

linear in g from exp[iS[ψ, ψ̄, φ]/~ in the integrand of the functional integral,∫
DφDψDψ̄ φ(x) e

i
~S[φ,ψ,ψ̄] →

∫
DφDψDψ̄ φ(x)

ig

~

∫
d3y φ(y) ψ̄(y)ψ(y) e

i
~S0[φ,ψ,ψ̄]

=
ig

~
∂

∂Jφ(x)

∫
d3y

∂

∂Jφ(y)

∂

∂RJα(y)

∂

∂LJ̄α(y)
Z

(0)
J

∣∣∣
J=0

= − ig

~

∫
d3y ∆φ(x, y) ∆α

α(y, y) . (15.18)

The diagram corresponding to this expression is depicted in Fig. 3. An noteworthy feature

concerns the overall minus sign, which is caused by the fact that the order of the derivatives

with respect to the fermionic sources is just the opposite from the order that appears in the

definition (15.16) of the propagator. This is a systematic feature: every closed fermion loop

will induce such a minus sign.

Let us work out the expression (15.18) in more detail. Inserting the expressions for the
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Figure 4: Diagrammatic representation of the one-loop fermionic self-energy discussed in
problem 15.1.

propagators, one readily obtains,

diagram =
i~g

(2π)6

∫
d3y d3k d3p

eik·(x−y)

k2 + µ2

tr[i/p+m]

p2 +m2

= − ~g
i(2π)3

1

µ2

∫
d3p

2m

p2 +m2
, (15.19)

which is independent of xµ.

The reader is encouraged to consider other diagrams as well. In problem 15.1 we will

consider a fermionic self-energy diagrams shown in Fig. 4. In the second of these diagrams

there is no closed fermion loop and therefore no extra minus sign emerges.

Needless to say, the evaluation of the Feynman diagrams would become rather laborious

if one has to start all the time from the functional integral. Therefore one relies on the

systematic Feynman rules for writing down the diagrams and their corresponding expressions.

Problem 15.1 : A one-loop fermionic self-energy diagram. in 2 + 1 dimensions

Consider the theory described by (15.7) and (15.10) and write down the contribution to the

fermion propagator quadratic in g. The corresponding diagrams are shown in Fig. 4. The

relevant expression in the functional integral follows from expanding the combined action to

second order in g and reads,

1

2

∫
DφDψDψ̄ ψα(x) ψ̄β(y)

(
ig

~

∫
d3z φ(z) ψ̄(z)ψ(z)

)2

e
i
~S0[φ,ψ,ψ̄] (15.20)

Show that this expression leads to the two diagrams shown in Fig. 4 and evaluate the

corresponding expressions.

Problem 15.2 : Real fermion fields in 2 + 1 space-time dimensions

In 2 + 1 dimensions one can also adopt gamma matrices that are real by identifying

γ0 = iσ2 , γ1 = σ1 , γ2 = σ3 . (15.21)
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In that case the fermion field can be chosen pseudo-real. Such pseudo-real spinors are known

as Majorana spinors.

i) Reconsider problem 13.6, and write out the Dirac Lagrangian (15.7) in terms of the

components of ψ and ψ̄. Find the correct reality property on the spinors and the

proper normalization of the action.

ii) What does the reality condition imply for the decomposition (13.43)? Can you state

the consequences of the pesudo-reality condition for the physical states?

iii) Can you indicate the changes that are necessary in chapter 15 when dealing with

Majorana fermions?

Problem 15.3 : A four-fermion vertex

Consider the four-fermion interaction term for Dirac (complex) fermion fields,

LI = g (ψ̄γµψ)2 . (15.22)

Derive the amplitude in tree approximation for fermion scattering, F (~p1)+F (~p2) → F (~p3)+

F (~p4), paying particular attention to the relative signs. Obviously one must have energy

and momentum conservation. Write down the corresponding equations for this.

Problem 15.4 : Fermion masses in perturbation theory

Consider the following Lagrangian of a massive fermion field in four space-time dimensions

coupled to some unspecified fields generically denoted by φ with coupling constant g,

L = −ψ̄/∂ψ −mψ̄ψ + Lint(g, ψ̄, ψ, φ) , (15.23)

where Lint describes the interactions. As usual /∂ = γµ∂µ with γµ the 4× 4 gamma matrices

satisfying {γµ, γν} = 2 ηµν , where ηµν denotes the space-time metric such that ηµν∂µ∂ν =

−∂t2 +∇2. The velocity of light has been set to c = 1.

i) Derive the free fermion field equation for ψ, both in the coordinate and in the momen-

tum representation.

ii) Derive the propagator ∆αβ(p) for the fermion field in momentum space (α, β are spinor

indices). Consider the poles at p2 +m2 = 0, and deduce from them how many physical

states the fermion has. To see this, you may go to the rest frame using that

γ0 =


i 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 −i

 . (15.24)
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When counting the states, take into account that the fermion field is complex. Explain

in physical terms why your answer is to be expected.

Due to the (unspecified) interactions there are irreducible self-energy diagrams contributing

to the propagator. These diagrams are at least proportional to g2 and in this case constitute

a 4 × 4 matrix, which we denote by g2Σαβ(p). In principle, Σ may contain terms of even

higher order in g. Lorentz invariance leads to the following decomposition,

Σ(p) = i /pA(p2) +B(p2) . (15.25)

Note that the B-term is meant to be proportional to the unit matrix in the spinor space.

The unit matrix is always suppressed in the literature.

iii) Use the Dyson equation (which is now a matrix equation) to include the self-energy

graphs and to obtain the full inverse propagator. The mass of the fermion states is

then given by the zero eigenvalue of the inverse propagator. Therefore introduce a

spinor Ψ(p) which satisfies /pΨ(p) = −iMΨ(p) with M the physical mass and let the

inverse propagator act on it. Write down the formula that determines the physical

mass M .

iv) Give the expression for M in leading order of perturbation theory. How many states

does the fermion field describe?

Problem 15.5 : An anomaly in the path integral

Consider the following action for massless fermion fields interacting with a photon field in

two dimensions,

Sfermion[ψ̄, ψ, A] =

∫
d2x iψ̄(/∂ − i /A)ψ . (15.26)

where /∂ = γµ∂µ, and /A = γµAµ. For technical reasons we consider the theory in two

Euclidean dimensions so that µ = 1, 2 and the 2 × 2 hermitean gamma matrices satisfy

the anticommutation relation {γµ, γν} = 2 δµν 1, where 1 denotes the identity matrix in

the 2-dimensional spinor space of the fields ψ. Note that ψ̄ and ψ will be considered as

independent fields and are not related by complex conjugation.

In this problem we will be interested in evaluating the path integral,

∆(A) =

∫
dµ(ψ̄, ψ) e−Sfermion[ψ̄,ψ,A] , (15.27)

where the path integral measure is defined by dµ =
∏

x,α,β [Dψ̄α(x)Dψβ(x)], and where α

and β denote spinor indices. We will not consider a path integral over the photon field. Note

that ∆(A) is formally equal to the determinant of the differential operator i /D = i(/∂ − i /A).
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i) Prove that the Lagrangian is invariant under gauge transformations, ψ(x) → exp[iΛ(x)]ψ(x),

ψ̄(x) → ψ̄(x) exp[−iΛ(x)] and Aµ(x) → Aµ(x) + ∂µΛ(x).

ii) Define a matrix γ3 = iγ1γ2. Prove that γ3 is hermitean and that its square equals the

unit matrix. Furthermore show that γ3 anticommutes with the γµ. From identities

such as γ1γ3γ1 = −γ3, prove that the γµ and γ3 are traceless.

iii) The Lagrangian is invariant under constant ‘chiral’ transformations,

ψ(x) → eiγ3ξ ψ(x) , ψ̄(x) → ψ̄(x) eiγ3ξ , Aµ → Aµ , (15.28)

where ξ is an arbitrary constant parameter. Prove the invariance for infinitesimal

transformations, δψ = iξγ3ψ, δψ̄ = iξψ̄γ3, and δAµ = 0.

Formally the path integral (15.27) is invariant under both gauge and chiral transforma-

tions because the measure dµ(ψ̄, ψ) is invariant. To see this, we note that

∂ψ′α(x)

∂ψβ(y)
=

{
[1 + iΛ(x)]δα

β δ2(x− y)

[δα
β + iξ(γ3)α

β] δ2(x− y)
(15.29)

where ψ′ denotes the field ψ subject to an infinitesimal gauge or chiral transformation.

iv) Subsequently, consider the Jacobian associated with these transformations in first order

of the parameters Λ and ξ. Prove for the gauge transformations that the field ψ

contributes a factor 1 − 2iΛ for each point xµ in space, to the Jacobian, whereas ψ̄

contributes 1 + 2iΛ.

Can you explain the minus sign in the second term?

Prove that the Jacobian is invariant under the gauge transformations. Subsequently,

prove that the Jacobians associated with the chiral infinitesimal transformations cancel

separately for ψ and ψ̄.

To prove that, in reality, the functional integral is not invariant, we decompose the

fermion fields in a basis of suitable eigenfunctions and integrate over them, in analogy to

what was done in chapter 6.2 for the much simpler case of the harmonic oscillator. Here we

base ourselves on two-component, commuting spinor functions, say ϕ and φ, with a gauge

invariant inner product,

(ϕ, φ) =

∫
d2x ϕ†α(x)φα(x) . (15.30)

The operator i /D = i(/∂ − i /A) is hermitean with respect to this inner product, so that

(ϕ, i /Dφ)∗ = (φ, i /Dϕ). Hence the operator i /D must have real eigenvalues λn and we may

introduce a complete orthonormal set of eigenfunctions, {χn} so that (χn, χm) = δn,m and

i /Dχn(x) = i(/∂ − i /A)χn(x) = λn χn(x) . (15.31)
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Subsequently decompose the fields ψ and ψ̄ according to

ψ(x) =
∑
n

an χn(x) , ψ̄(x) =
∑
n

χ†n(x) b̄n , (15.32)

where the an and b̄n are independent anticommuting coefficients. Because of the completeness

of {χn}, any transformation of the fields ψ̄ and ψ induces a corresponding transformation

on the coefficents b̄n and an, respectively.

v) To be as general as possible we also elevate the constant parameter ξ to a function

ξ(x). Prove that the infinitesimal gauge and chiral transformations can be written as

(we suggest that you only work out the first and the last transformation below),

δan = i Λnm am ,

δb̄n = −i b̄m Λmn ,

δan = i ξnm am ,

δb̄n = i b̄m ξmn ,
(15.33)

where Λmn and ξmn are infinite-dimensional hermitean matrices defined by (we leave

the contraction over spin indices implicit),

Λmn =

∫
d2x Λ(x)χ†m(x)χn(x) , ξmn =

∫
d2x ξ(x)χ†m(x) γ3χn(x) . (15.34)

vi) We may write the integration measure as

dµ(ψ̄, ψ) =
∏
n

db̄n dan . (15.35)

Argue that the measure is invariant under infinitesimal gauge transformations and

prove that it changes under infinitesimal chiral transformations according to

dµ→ (1− 2i
∑
n

ξnn) dµ . (15.36)

vii) To evaluate the infinite sum,
∑

n ξnn, we introduce a regularization and write,∑
n

χ†n(y)γ
3χn(x) = lim

M→∞

(∑
n

χ†n(y)γ
3χn(x) e−(λn/M)2

)
. (15.37)

Subsequently, we have to integrate (15.37) with
∫

d2x d2y δ2(x− y) ξ(x) to obtain the

expression for
∑

n ξnn. These integrals are postponed till the end.

Prove that (15.37) can be written as

lim
M→∞

Tr
[
γ3 exp[M−2(∂µ − iAµ(x))

2 − 1
2
M−2γ3εµνFµν(x)]

]
δ2(x− y) , (15.38)

where the trace is over the two-dimensional spinor space, Fµν = ∂µAν − ∂νAµ is the

field strength, εµν is the antisymmetric tensor, and we have used the completeness

of the functions {χn}. To derive this result, realize that covariant derivatives do not

commute: DµDν −DνDµ ∝ Fµν .
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viii) We can write the delta function as δ2(x − y) = (4π2)−1
∫

d2k exp[ik · (x − y)]. Fur-

thermore we should perform the x- and y-integrations as mentioned above. It can be

shown that the only non-vanishing term in the limit M →∞, equals (you do not have

to prove this),∑
n

ξnn = − 1

4π2M2

∫
d2x ξ(x) εµνFµν(x)

∫
d2k e−k

2/M2

(15.39)

Evaluate the final result by performing the k-integral. What is your conclusion? What

is the effect of taking ξ constant?

16 Regularization and renormalization

The momentum integrals we have to perform in the calculation of Feynman diagrams are

often divergent. We distinguish two kinds of divergences: ultraviolet divergences (UV),

where the divergence comes from the behaviour at large integration momenta and infrared

divergences (IR) caused by singular behaviour of the integrands at small momenta. The

latter usually arise when the fields are massless. The UV divergences can be characterized

by their so-called superficial degree of divergence. An integral of the type∫
ddp

pβ

(p2 +m2)α
, (16.1)

is called finite when 2α−β > d, logarithmically divergent when 2α−β = d, linearly divergent

when 2α− β = d− 1, and so on.

In the presence of divergences we need a mathematical prescription to deal with the

integrands and to perform algebraic manipulations on the Feynman diagrams. Such a pre-

scription is called a regularization method. The method can usually be implemented by

making certain modifications to the Lagrangian. We mention four methods.

1. Higher-derivative regularization:

We can introduce higher-derivative terms into the Lagrangian, for instance by intro-

ducing the term

L = −ξ−1(�φ)2 in additon to L = −(∂µφ)2

Then the propagators are modified according to

1

q2
−→ ξ

q2(q2 + ξ)
,
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which makes most of the integrals finite. In the limit ξ → ∞ these divergences reap-

pear. In theories where an invariance principle relates the kinetic term to the inter-

actions, such as a gauge theory or a so-called non-linear sigma model, this method

usually renders the theory finite beyond but not at the one-loop level.

2. Pauli-Villars regularization:

In this regularization method we add massive regulator fields to the Lagrangian, some

with the “wrong” metric and/or statistics. A field φ will usually be replaced in the

interaction Lagrangian by a linear combination involving regulator fields φi,

φ −→ φ+
∑
i

φi

The masses, metric and statistics of the regulator fields φi are chosen such that the sum

of the diagrams containing both the original and the regulator fields become finite. The

divergences reappear in the limit that the regulator masses are taken to infinity. To use

this method we must choose the same momentum parametrization for corresponding

diagrams that involve the original field and the regulator fields. Otherwise the result

of this regularization may become ambiguous, due to the fact that one is not allowed

to shift the integration variables in certain divergent integrals. In this method special

care is required to preserve symmetries of the original theory.

3. Analytic regularization:

Here the propagators are changed by replacing (p2 + m2)−1 by (p2 + m2)−λ with λ

complex. The integrals are then defined by making an analytic continuation in λ. To

preserve symmetries in this approach is often problematic.

4. Dimensional regularization

In most theories nothing refers specifically to the number d of space-time dimensions.

The integrals are defined by an analytic continuation from a region in the parameter d

where the integrals do exist. Divergences then emerge as poles at d = 4. The method

is applicable to a large class of theories. It has problems in the presence of symme-

tries that explicitly depend on the dimension, e.g. chiral symmetry, supersymmetry,

conformal symmetry. We refer to De Wit & Smith for an introduction to this method.

After having introduced a regulator scheme we can rigorously deal with the amplitudes.

However, at the end of the calculation we wish to remove the regulators again, for instance,

by letting the mass of the regulator fields go infinity (in Pauli-Villars) or by finally taking

the limit d −→ 4 (in dimensional regularization). In this way we still recover the original
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infinities, and our next task is to remove or absorb them in order to get finite physical quan-

tities. The method for this is called renormalization: one absorbs the infinities of the theory

in a well-defined manner into the original parameters of the theory. The renormalization

procedure is described in chapter 7 of De Wit & Smith. The reader may be worried that

different regularization methods yield different answers, but these (finite) differences can be

consistently removed by finite renormalizations, so that at the end the results will coincide

(at least in perturbation theory).

Here we give a more formal treatment of renormalization theory. We start with some

definitions.

1. A one-particle irreducible graph (1PI) is a graph which cannot be divided into two

disconnected pieces by cutting only one internal line.

2. Superficial degree of divergence (DΓ) of a 1PI diagram Γ is the overall divergence that

one naively extracts by counting powers of integration momenta. This is the leading

power in λ if we make the replacement p −→ λp (external momenta are kept fixed).

For one-loop diagrams it is the highest possible degree of divergence. Therefore for a

one-loop diagram, being superficially finite implies that it is UV finite, but being super-

ficially divergent does not imply that the actual expression is necessarily divergent. At

higher loops a superficially finite integral may still diverge in certain domains of the in-

tegration region, for instance those domains that correspond to divergent subdiagrams.

We will give an example of this in due course.

A 1PI diagram generally leads to an expression that involves a number of momentum inte-

grals (one for each propagator), momentum-conserving delta functions (one for each vertex)

and an integrand that consists of a product of propagators and vertices, i.e.,∫
ddp · · · δd(p) . . .

(
1

p2 +m2
. . .

)
, (16.2)

so that the number of integration variables equals the number of propagators I, the number

of δ-functions equals the number of vertices V , and the last part between the curly brackets

denotes the product of all propagators and vertices. Because we are dealing with a con-

nected graph, all but one of the the δ-functions can be integrated out. The remaining one

is a δ-function that only contains the external momenta, expressing energy-momentum con-

servation. Therefore the number of independent integration momenta is reduced by V − 1.

This number is equal to the number of loops L. so that we have

L = I − V + 1 . (16.3)
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Let us now distinguish different types of internal lines, corresponding to different types

of fields φi. The number of internal lines (propagators) of type i in a given graph is denoted

by Ii. The propagators are given by the diagonal terms in the Lagrangian quadratic in

the fields. (For simplicity we assume that we either diagonalize the kinetic terms or treat

off-diagonal terms as interactions). Because the term in the Lagrangian quadratic in the

fields that contains the highest number of derivatives is conventionally not multiplied by a

dimensional constant, it determines the dimension di of the field φi. Let us assume that

the highest number of derivatives in the part of the Lagrangian quadratic in φi equals αi,

so that (schematically) we have a term L0 ∼ φi ∂
αi φi in the Lagrangian. As the action is

dimensionless (in units where ~ = 1) the Lagrangian has dimension [mass]d. Therefore the

dimension of φi is equal to

di =
d− αi

2
. (16.4)

By defining the field dimension in this way the behaviour of the propagator for asymptotically

large (Euclidean) momenta is gouverned by the dimension. The propagator associated with

φi behaves as

∆i(p) ∼
1

pαi
= p2di−d , for p→∞. (16.5)

Consider a few examples. For the Klein-Gordon Lagrangian

L = −1
2
(∂µφ)2 − 1

2
m2φ2,

we have α = 2. So dφ = 1
2
(d − 2) and the propagator behaves as p−2 at large p. For the

Dirac Lagrangian

L = −ψ(/∂ +m)ψ,

we have α = 1. So dψ = 1
2
(d − 1) and the propagator behaves as p−1 at large p. For the

Lagrangian

L = −1
2
(�φ)2 − 1

2
m2

1(∂µφ)2 − 1
2
m2

2φ
2 ,

we have α = 4. So dφ = 1
2
(d− 4) and the propagator behaves as p−4 at large p.

Let us now consider the vertices. We label different types of vertices by α and denote the

number of these vertices by Vα, such that the total number of vertices equals V =
∑

α Vα.

With each type of vertex we associate a coupling constant gα. Assuming that the vertex of

type α contains nαi fields φi, then the dimension of the vertex is given by

δα =
∑
i

nαi di + number of space-time derivatives. (16.6)
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With the above definitions it is clear that a propagator gives rise to 2di− d and a vertex

to δα−
∑

i n
α
i di momentum factors in the integrand. The number of momentum integrations

is fixed by the number L of closed loops. Therefore the superficial degree of divergence of

the diagram is equal to

DΓ = dL+
∑
α

Vα

(
δα −

∑
i

nαi di

)
+
∑
i

Ii(2di − d)

=
(∑

i

Ii −
∑
α

Vα + 1
)
d+

∑
α

Vα

(
δα −

∑
i

nαi di

)
+
∑
i

Ii(2di − d)

= d+
∑
α

Vα(δα − d) +
∑
i

di

(
2Ii −

∑
α

Vαn
α
i

)
. (16.7)

Subsequently we note that in a 1PI diagram the total number of fields φi emanating from

the vertices must be equal to the sum of the number of endpoints of the internal lines and

one of the endpoints of the external lines associated with φi. Thus we obtain the equality

Ei + 2Ii =
∑
α

nαi Vα , (16.8)

where Ei is the number of external lines associated with the field φi. Using this relation then

leads to the result

DΓ = d−
∑
α

Vα (d− δα)−
∑
i

Ei di. (16.9)

This remarkably simple result expresses the superficial degree of divergence in terms of d−δα,
the dimension of the coupling constant gα, and the dimensions of the external fields (di).

If DΓ ≥ 0 then the diagram Γ is called superficially divergent: DΓ = 0 corresponds to a

logarithmic divergence, DΓ = 1 to a linear one, etc. For DΓ < 0 the diagram Γ is called

superficially finite.

Suppose now that the dimension of the interaction is not larger than d, i.e. δ ≤ d, so that

the theory has no coupling constants of negative dimensions. In that case the maximal degree

of divergence will not increase in higher orders of perturbation theory and depends only on

the number of external lines. Theories that satisfy this condition are called: renormalizable

by power counting. They are thus characterized by coupling constants with non-negative di-

mensions. Theories with coupling constants that are positive are called superrenormalizable,

because in that case the degree of divergence will decrease with the number of interactions.

On the other hand, in the presence of coupling constants of negative dimension (16.9) tells

us that the superficial degree of divergence will grow with the number of interactions. Then

short-distance behaviour becomes worse (i.e. more divergent) in higher orders of pertur-

bation theory. A well-known example is gravity in four space-time dimensions, which is
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not renormalizable by power counting. The coupling constant is Newton’s constant, which

has negative dimension. A somewhat more subtle example is the Proca theory (see Prob-

lem 15.5).

Now that we can classify the graphs according to their superficial degree of divergence

we can discuss the renormalization procedure. First we expand the superficially divergent

1PI graphs in a Taylor series in the external momenta. Such an expansion will be of the

form

a+ bµ p
µ + cµν p

µpν + . . . (16.10)

where the expansion coefficients now carry a superficial degree of divergence of DΓ, DΓ −
1, DΓ− 2, etc. The expansion about zero momenta may be troublesome, in particular in the

presence of massless particles, but this is a technical problem that we leave aside.

We are now in a position to state the subtraction procedure of Bogoliubov, which is defined

in a perturbation theory as an iterative procedure.

1. Calculate in perturbation theory, until one encounters a 1PI diagram Γ, whose su-

perficial degree of divergence, DΓ, is larger than or equal to zero. We expand those

diagrams in a Taylor series in terms of the external momenta as described above.

2. Add to the Lagrangian extra terms (counterterms) chosen to precisely cancel (to this

order in perturbation theory) all the superficially divergent terms in the Taylor expan-

sion. These counterterms have the structure of the original diagrams shrunk to a point

and may contain a certain number of derivatives. Their dimension is given by

δct =
∑
i

Eidi ,
∑
i

Eidi + 1 , . . . ,
∑
i

Eidi +DΓ . (16.11)

3. Continue the calculation using the modified Lagrangian.

According to Hepp’s theorem this procedure eliminates all divergences, not only the super-

ficial ones.

To illustrate the renormalization procedure, let us once more consider the example of

the φ4 theory in four dimensions. We have only two classes of superficially divergent 1PI

diagrams For the selfenergy diagrams, which have D = 2, the first two terms in the Taylor

expansion, Π(p) = A + Bp2, are superficially divergent; the constant A is quadratically

(D = 2), and the constant B logarithmically (D = 0) divergent. There is no three-point

function. For the four-point function we have only a superficially logarithmically divergent

constant C. Hence the counterterms take the form

Lct = −1
2
Aφ2 − 1

2
B(∂µφ)2 + 1

24
Cφ4,
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where A,B and C are expressed by power series in the coupling constant. However, these

terms already occur in the original Lagrangian, so that we can simply absorb these terms

into the original quantities, fields and coupling constants, of the theory,

Ltotal = L+ Lct = −1
2
(1 +B)(∂µφ)2 − 1

2
(m2 + A)φ2 − (λ− 1

24
)Cφ4 .

Such theories are called renormalizable: the infinities can be absorbed into the original

parameters, order by order in perturbation theory.

It is now clear that when a theory is not renormalizable by power counting, we have

to introduce more and more different counterterms when going to higher orders in pertur-

bation theory. Therefore such theories have no predictive power. They are called non-

renormalizable. Also, such theories require additions to the Lagrangian that have more

and more derivatives. This will have direct consequences for the unitarity and causality

properties of the theory.

We close with some more definitions. A Lagrangian is called strictly renormalizable if it

is renormalizable by power counting and it is the most general Lagrangian with interactions

of dimension δ ≤ d. A Lagrangian that is not of the most general form can still be renor-

malizable because fewer counterterms are required than indicated by the general argument.

This happens in the presence of a symmetry (or an approximate symmetry if the symmetry

breaking is sufficiently “soft”).

In the presence of symmetries it must be shown that the regularization and renormaliza-

tion preserves the symmetry. This is particularly difficult for non-linear symmetries. The

transformation properties of the fields introduce new vertices, which are not present in the

original Lagrangian. We have to allow counterterms for these vertices also which leads to a

renormalization of the transformation properties, and verify that this is consistent with the

renormalization of the Lagrangian. Such complications occur for instance in the non-linear

O(N) sigma model, in two-dimensional gravitation, for the BRST transformation in gauge

symmetries and for certain supersymmetry models.

Problem 15.1 :

Consider a φ3 interaction in four space-time dimensions. Write down the superficially di-

vergent 1PI graphs. Consider the two-loop self-energy graphs, which are superficially finite.

Show that some of these graphs are still infinite and that this divergence is related to certain

subdiagrams. Do we need counterterms beyond two loops?

Problem 15.2 :
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For the Lagrangian

L = −1
2
(∂µφ)2 − 1

2
m2φ2 − λφ4,

verify that

dφ = 1
2
(d− 2).

The dimension of the φ2 term is thus equal to d−2, and the dimension of the φ4 term equals

δ = 2d − 4. Because L must have dimension d, the dimension of the coupling constant is

d− δα, so that dim[m2] = 2 (as expected) and dim[λ] = 4− d. Show that DΓ = 4− E.

Problem 15.3 :

Consider interacting fermions ψ and scalars φ in d dimensions with the interaction La-

grangian LI ∼ (ψ̄φψ). We know already that dφ = 1
2
(d − 2), dψ = 1

2
(d − 1), so that

δ = 3
2
d− 2. Eq. (16.9) then gives

DΓ = d+ V
(d

2
− 2
)
− Eψ

d− 1

2
− Eφ

d− 2

2
.

Argue that in four dimensions the superficial degree of divergence depends only on the

external lines. In four dimensions this theory needs also counterterms other than (ψ̄φψ),

namely proportional to φ, φ3 and φ4, so it is not strictly renormalizable. In two dimensions

the theory is renormalizable when we allow shifting the φ field by an infinite constant.

Problem 15.4 :

Show that for a (φ)N theory in two dimensions the field dimension and the dimension of the

interaction terms are zero. This gives

DΓ = 2− 2V.

Therefore the superficially divergent diagrams are those with only a single interaction vertex.

Argue that the theory is not strictly renormalizable because the counterterms are of the form

φN−2, φN−4, . . .. Consequently the theory

L = −1
2
(∂µφ)2 − 1

2
µ2φ2 + λ0φ

N + λ1φ
N−2 + λ2φ

N−4 + · · · ,

is strictly renormalizable. Can you say something about the possible renormalizability of

the SO(N) nonlinear sigma model in two dimensions, defined by the Lagrangian

L = −1
2

(∂µ~φ)2

(1 + λ~φ2)2
.
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where ~φ is an (N − 1)-dimensional vector of scalar fields (φ1, . . . , φN−1). The above model

is called the SO(N) nonlinear sigma model because it is invariant under SO(N).

Problem 15.5 : Massive vector fields

Argue that the following Lagrangian of a massive vector field is not renormalizable by power

counting in four dimensions.

L = −1
4
(∂µVν − ∂νVµ)

2 − 1
2
M2V 2

µ + ieVµ ψ̄γ
µψ − ψ̄(/∂ +m)ψ.

Note that the dimension of the vector field is generically equal to 1, but since the longitudinal

component carries no derivatives in L, its dimension is equal to 2. Therefore the interaction

of this field component to the fermions has δ = 5. The form of the propagator,

ηµν + pµpν/M
2

p2 +M2

indeed behaves as (p)0 for longitudinal components.

Problem 15.6 : Renormalizability of massive vector fields

Consider a vector field Aµ coupled to a real scalar field φ and a spinor field ψ in four

space-time dimensions, described by the Lagrangian

L = −1
4
(∂µAν − ∂νAµ)

2 − M2

2 q2

∣∣∣(∂µ − iqAµ)e
iqφ/M

∣∣∣2 − ψ̄(∂/− igA/ +m)ψ .

• Show that the Lagrangian is invariant under the combined gauge transformations,

Aµ → Aµ + ∂µξ ,

φ → φ+M ξ ,

ψ → exp[igξ]ψ ,

where ξ(x) is an arbitrary function of space and time.

• Collect all terms quadratic in the fields Aµ and φ. Argue that the inverse propagator

takes the form of a 5×5 matrix and determine this matrix. Does the propagator exist?

(Try to motivate the answer in two different ways: both on the basis of the explicit

matrix and on the basis of a more general argument.)

• Argue that φ = 0 is an admissable gauge condition. Determine now the propagator for

Aµ in this gauge. What are the physical bosonic states of given momentum described

by the resulting Lagrangian? (Note: we do not ask for a detailed derivation.)
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• Is the theory renormalizable by power counting and why (not)? Write down the ex-

pression for the fermion self-energy diagram in the one-loop approximation (there is

no contribution from tadpole diagrams, so one has only one diagram to consider)

and determine the degree of divergence of the corresponding integral. What kind of

counterterms do you expect to need in order to absorb the infinities of the integral?

(Give qualitative arguments; do not calculate the integral or the coefficients of these

counterterms.)

• We now choose another gauge condition by adding the following term to the La-

grangian,

Lgauge−fixing = −1
2
(λ ∂µA

µ −Mλ−1φ)2 ,

with λ an arbitrary parameter. Calculate again the propagators for Aµ and φ. What

are in this case the physical bosonic states for given momentum described by the

corresponding Lagrangian. Compare your result with your previous answer and give

your comments.

• In the last formulation, is the theory renormalizable by power counting and why (not)?

Write down the expression for the fermion self-energy diagram in the one-loop approx-

imation and determine again the degree of divergence of the integral. In this case,

what are the counterterms that are needed in order to absorb the infinities?

• Is the theory now fully renormalizable or not?

• Determine the difference between the expressions for the fermion self-energy diagram

in the two gauges on the mass shell, i.e. sandwiched between spinors that satisfy the

Dirac equation (ip/ + m)u = 0 (this implies that p2 + m2 = 0). Did you expect this

result and why (not)?
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17 Further reading

Here we list a number of textbooks on quantum field theory. In the text we have referred a

number of times to and occasionally used text from:

• B. de Wit and J. Smith, Field theory in particle physics (Elsevier, 1986).

This book is aimed at particle physics and is intended for experimentalists and beginning

theorists. There are other many books on quantum field theory and applications, at various

levels. For the convenience of the reader we present a list below:

• A.A. Abrikosov, L.P. Gorkov and I.E. Dzyaloshinskii, Quantum Field Theoretical

Methods in Statistical Physics (second edition, Pergamon, Oxford, 1965).

• I.J.R. Aitchison and A. Hey, Gauge Theories in Partic1e Physics (Adam Hilger, Bristol,

1982).

• D. Bailin and A. Love, Introduction to Gauge Field Theory, Adam Hilger, Bristol,

1986.

• R. Balian and J. Zinn-Justin, Jean (eds.), Methods in Field Theory, NorthHolland,

Amsterdam, 1976. Proceedings of the 1975 Les Houches Summer School in Theoretical

Physics.

• V. B. Berestetskii, E. M. Lifshitz and L.P. Pitaevskii, Quantum Electrodynamics (sec-

ond edition, trans. J. B. Sykes and J. S. Bell), Pergamon, Oxford, 1982.

• J.D. Bjorken and S.D. Drell, Relativistic Quantum Mechanics (McGraw-Hil( New Vork,

1964).

• J.D. Bjorken and S.D. Drell, Relativistic Quantum Fields (McGraw-Hill, New Vork,

1965).

• D. Bleecker, Gauge Theory and Variational Principles (Addisoa-Wesley, Reading, MA,

1981).

• N.N. Bogoliubov and D.V. Shirkov, Introduction to the Theory of Quantized Fields,

3rd Ed. (Wiley, New Vork, 1979).

• N.N. Bogoliubov and D.V. Shirkov, Quantum Fields (Benjamin/Cummings, Reading,

MA, 1983).
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• T.-P. Cheng and L.-F. Li, Gauge Theory of EIementary Partic1e Physics (Oxford

University Press, New Y ork, 1984).

• G. Parisi, Statistical Field Theory, Benjamin/Cummings, 1988.

• A.L. Fetter and J.D. Walecka, Quantum Theory of ManyPartic1e Systems, McGraw-

Hill, New York, 1971.

• K. Huang, Quarks, Leptons and Gauge Fields (W orld Scientific, Singapore, 1981).

• C. Itzykson and J.-B. Zuber, Quantum Field Theory (McGraw-Hill, New York, 1980).

• J.M. Jauch and F. Rohrlich, The Theory of Photons and Electrons (second edition),

Springer-Verlag, Berlin, 1976.

• M. Kaku, Quantum Field Theory: A Modern Introduction, Oxford University Press,

New York, 1993.

• G. Källén, Elementary Partic1e Physics (Addison-Wesiey, Reading, MA, 1964).

• L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields (fourth revised English

edition, trans. Morton Hamermesh), (Pergamon, Oxford, 1975).

• Ma, Shang-Keng, Modern Theory of Critical Phenomena, Benjamin/Cummings, 1976.

• F. Mandl and G. Shaw, Quantum Field Theory (Wiley, New Vork, 1984).

• C. Nash, Relativistic Quantum Fields (Academie, New York, 1978).

• C. Quigg, Gauge Theories of the Strong, Weak and Electromagnetic Interactions (Ben-

jamin/Cummings, Reading, MA, 1983).

• Pierre Ramond, Field Theory: A Modern Primer (second edition), Addison Wesley,

Redwood City, California, 1989.

• L.H. Ryder, Quantum Field Theory (Cambridge University Press, 1985).

• J. Sakurai, Invariance Principles and Elementary Particles (Princeton University Press,

1964).

• J. Sakurai, Advanced Quantum Mechanics (Addison-Wesley, Reading, MA, 1973).

• F. Scheck, Leptons, Hadrons and Nuclei (North-Holland, Amsterdam, 1983).
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• W Siegel, Fields, pdf file available from http://insti.physics.susysb.edu/ siegel/plan.html.

• H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena, Oxford Uni-

versity Press, Oxford, 1971.

• S.S. Schweber, QED and the Men Who Made It: Dyson, Feynman, Schwinger, and

Tomonaga, Princeton University Press, Princeton, 1994.

• J. Schwinger, Particles and Sources (Gordon and Breach, New York, 1969).

• J. Schwinger, Particles, Sourees and Fields, Vol. I (Addison-Wesley, Reading, MA,

1970).

• G. Sterman, Introduction to Quantum Field Theory, (Cambridge University Press,

1993).

• J.C. Taylor, Gauge Theories of Weak Interactions (Cambridge University Press, 1976).

• F.J. Ynduráin, Quantum Chromodynamics, An Introduction to the Theory of Quarks

and Gluons (Springer, New Vork, 1983).

• A. Zee, Field Theory in a Nutshell, (Princeton University Press).

• J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (second edition, Oxford

University Press, 1993).
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